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Preface to the English Edition

In the present edition I have included “Supplements and Problems” located
at the end of each chapter. This was done with the aim of illustrating the
possibilities of the methods contained in the book, as well as with the desire
to make good on what I have attempted to do over the course of many years
for my students—to awaken their creativity, providing topics for independent
work.

The source of my own initial research was the famous two-volume book
Methods of Mathematical Physics by D. Hilbert and R. Courant, and a series
of original articles and surveys on partial differential equations and their
applications to problems in theoretical mechanics and physics. The works of
K. O. Friedrichs, which were in keeping with my own perception of the
subject, had an especially strong influence on me.

I was guided by the desire to prove, as simply as possible, that, like
systems of n linear algebraic equations in n unknowns, the solvability of
basic boundary value (and initial-boundary value) problems for partial
differential equations is a consequence of the uniqueness theorems in a
“sufficiently large™ function space. This desire was successfully realized
thanks to the introduction of various classes of general solutions and to an
elaboration of the methods of proof for the corresponding uniqueness
theorems. This was accomplished on the basis of comparatively simple
integral inequalities for arbitrary functions and of a priori estimates of the
solutions of the problems without enlisting any special representations of
those solutions.

In this present edition I included some explanations of the basic text,
and corrected misprints and inaccuracies that I noticed.

In conclusion, I want to express my deep gratitude to Professor A. J.
Lohwater, who, regardless of the demands of his own scientific and

b42&9



viii --- . Preface to the English Edition

pedagogical work, expressed the desire to acquaint himself with my book
in detail and trapslate it into English. He translated all six chapters, but was
not able to ec‘iit the book. The tragic, untimely death of Professor Lohwater
cut short work on the book. The translation of “ Supplements and Problems”
I completed myself, and the translation of the “Introduction™ and of this
preface was done under the supervision of Springer-Verlag.

I thank all who have worked on this edition, especially the editorial
and production staff of Springer-Verlag,

July 1984 0. A. LADYZHENSKAYA
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CHAPTER 1
Preliminary Considerations

This chapter is of an introductory character and we shall present a series of
concepts and theorems from functional analysis which will be used in the
sequel for studying boundary value problems for differential equations.
These facts will be stated without proof.

Moreover, we introduce a number of concrete functional spaces and
describe properties of these spaces of interest to us. We shall either give
complete proofs of some of these theorems, or else describe the fundamental
steps by which the reader can reconstruct complete proofs.

In the course of the entire book we shall use Lebesgue measure and the
Lebesgue integral. The reader of this book should also be familiar with the
fundamentals of real variables and functional analysis (see [AK 1]. (LTS 1],
[SM 1:2],[SO 5]. {RN 1].

§1. Normed Spaces and Hilbert Spaces

A set E of abstract elements is called a real (complex) linear normed spuce if:

(1) Eis alinear vector space with multiplication by rea! (complex) numbers;
(2) To every element u of E there is a real number (called the norm of the
element and denoted by |ul) satisfying the following axioms:

(a) |lull > 0, where jlul| = 0 only for the zero element:
(b) llu + vl < lluil + lvl, the triangle inequality:
() lAull = 1A} lull.



2 I. Preliminary Considerations

A natural metric can be introduced into such a space: the distance p(u, v)
between two elements u and v is defined by p(u, v) = [lu — v||. The conver-
gence of a sequence {u,} of elements of E to u € E in the norm of E (in other
words, strong convergence in E) is defined by Ju, — u| - 0asn — », and
in abbreviated notation by u, - u.

A collection of elements E' < E is said to be everywhere dense in E if any
clement of E is the limit, in the norm of E, of clements of E'.

If E contains a countable, everywhere dense set of elements, then E is
called separable. The sequence {u,})_, s called convergent (or Cauchy
sequence, or fundamental) if Jlu, — u,] — 0 when p, g — .

If, for every Cauchy sequence {u,},~ ,, there is a limiting element u in E,
then E is called complete (in this case {ju, — ull - O whenn — oc). A complete,
linear, normed space is usually called a space of type B or a Banach space.
All spaces considered below will be complete and separable.

We shall be dealing basically with a particular case of the Banach spaces,
namely, the Hilbert spaces. In a real Hilbert space H we define a scalar
product (u, v) for an arbitrary pair of elements u and v. It is a real number
satisfying the following axioms:

(@) (u,v) = (v, u);

(b) (ul + Uy, D) = (ul’ U) + (uZ» U):

() (Au, v) = Au, v);

(d) (u, u) > 0, where (u, w) = 0 only for the zero element u = 0.

In a complex Hilbert space the scalar product (u, v) is a complex number
eatisfying axioms (b)~(d), togethcr with the axiom (a’) (u, v) = (v, u) instead
of axiom (a).

As the norm of an element u we take the number jju| = \/(u u). In the
definition of a Hilbert space we include the requirement that it be complete
and separable. -

For any two elements u and v in H we have the inequality of Cauchy,
Bunyakowvski, and Schwarz:

(e, O)F < fult - o,

which we shall simply call Cauchy’s inequality in the sequel.

In addition to convergence in norm (strong convergence) in the space H,
we shall also consider weak convergence. A sequence {u,} is said to converge
weakly in H to the element u if (v, — u, v) > 0 as n —» oc for all ve H. For
brevity, this will be denoted by u, — u. It is not difficult to understand that
if the norms of the {u,} are uniformly bounded, then to prove the weak con-
vergence of {u,} to u, it is enough to verify that (u, — u,»)*>0asn -
only for some set V which is everywhere dense in H. A sequence {u,} cannot
be weakly (much less strongly) convergent to two different elements of H.
If {u,} converges to u in the norm of H, then it converges weakly to u. The
converse is false. However, if, in addition to the weak convergence of {u,}
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to u, it is known that |ju,) — Jjul, then {u,} converges strongly to u. In the
sequel we shall make frequent use of the following proposition:

Theorem 1.1. If the sequence {u,} converges weakly to u in H, then

hull < tm fu,) < Tim g,

n—w n—og

where the right-hand side of this inequality is finite.

A Hilbert space (and we emphasize that, by definition, such spaces are
complete), as well as any closed subspace of it, is complete with respect to
weak convergence.}

A set M in a Banach space B is called precompact (or precompact in B) if
every infinite sequence of elements of M contains a convergent subsequence.
1f the limits of all such subsequences belong to M, then M is called compact
(or compact in itself ). In a similar way we introduce in a Hilbert space H the
notions of weak precompactness and weak compactness. We have the follow-
ing criterion of weak compactness in H:

Theorem 1.2. A4 sct M of H is weakly precompact if and only if it is bounded.

We mention two examples of real spaces B and H. The totality of all real-
valued measurable functions u(x), defined on a domain Q of Euclidean space
R" with a finite integral ‘

.0 = ( L lu(x)l"dx) ’ (LY)

with arbitrary fixed p > 1, forms a (complete) separable Banach space if its
norm is defined by (1.1). This space is usually denoted by L,Q). Strictly
speaking, it must be understood that an element of L () is not any function
u(x) with the properties indicated, but rather the class of functions which are
equivalent to it on Q (that is, those functions which coincide with it almost
everywhere on £2). Nevertheless, for the sake of brevity we shall speak of the
elements of L ,(Q) as functions defined on Q.
As examples of everywhere dense sets in L (£2) we can take:

(a) all infinitely differentiable functions, or all polynomials, or even only
polynomials with rational coefficients;

(b) the set C*(Q) of all infinitely differentiable functions with compact
supports belonging to Q.

+ This is also true for non-linear convex sets. but it is not true for all closed sets. For example, the
set Sg = {u: |full = R} is closed but not weakly closed.



4 I. Preliminary Considerations

The space L,(£)) becomes a real Hilbert space if we mtroduce a scalar
product by means of the equality

(4, v) = ( u(x)v(x) dx.

vQ

Throughout most of the book we shall deal with the real spaces B and H.
The exception consists of §3, 4, 5, and 7 of Chapter 1 and of §2 of the present
chpter in which we use complex Hilbert spaces. including the complex
space L;(€2). The elements of this last space are the complex-valued functions
u(x) = u,(x) + iu,(x) with the scalar product defined as

(4, v) = f u(x)v(x) dx.
Q

We mention a number of algebraic and functional inequalities which
we shall use frequently in the course of the entire book.
Cauchy’s inequality:

. Z a; g ’7,| \/ z (lljgl-éj Z arj’ ’71 (12)
i, j=1 ij=1 iji=t
which ts valid for any non- -negative quadratic form a;; S, <, with a; = aj; and
for arbitraryreal &1, ..., &, 0s -0y M.
“Cuauchy's inequality with £
T .
lab | < 2[u|* + é—}:!bf“ (1.3)

which holds for all ¢ > 0 and for arbitrary a and b and its generalization—
Young’s inequality:

pilp—~1)

&

fab| Silﬁal” + forall p> 1. (1.3)

From the functional inequalities we need inequalities which are concrete
versions of the triangle inequality and Cauchy’s inequality.
For the space L,(Q) these take the form

1/2 1/2 1,2
(f (u + v)* dx) < (f u? dx) + (J‘ vl dx) (1.4,)
0 9] 0
1:2 1/2
f uv dx | < (f u? dx) ( ( vzdx) (1.47)
o Q Ja

and
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For the space L,(Q) consisting of the vector functions u = (u,, ..., Uy)
with u; € L,(€2), Cauchy’s inequality takes the form

N 1/2 N 12
< ( Zu,z dx) ( 2_ i dx) . {1.5)
ai=i ni=1

The left-hand side of (1.5) is the modulus of the scalar product of u and v,
while the right-hand side is the product of the norms of u and v. As a gener-
alization of (1.4,) we have Holder’s inequality,

f uv dx (J. 1u|"dx) /P( fﬂlvl"’ dx)up,, (1.6)

which holds for any ue L(Q), ve L,(Q) and for all p > 1 (p' will always
denote the exponent conjugate to p, i.e., p' = p/(p — 1)). For p = 1 we have
p' = %, and by (v, q it is necessary to take ess supjv|. The inequality

B

San|<(rar) (S r) " )

N
Y uv; dx
Qi=1

(=1 i=

is the discrete analogue of (1.6). A generalization of (1.4,) gives the triangle
inequality for clements of L (Q):

At e < lulpa+ivlpe (P21 - (1Y)
It s also true that

N | N 1/p ‘N 1/p’
f 3w J\;<< y |ui[”dx) ( y fv,.fP'dx) (p=1)
Q i

i=1 2i=1 Qi=1

(1.9)

§2. Some Properties of Linear Functionals and
Bounded Linear Operators in Hilbert Space

A linear functional [ on H (complex or real) is a linear, continuous, numerical
function Ku) which is defined for all ¥ € H. Linearity of / (or distributivity)
means that, for arbitrary elements u; and u, of H and for arbitrary numbers
Aand pu.

(Au, + pus,) = Al(uy) + pl(u,). (21

Continuity of l(x) means that i(u,) — I(u) whenever u, — u. It has been shown
that if [(x) satisfies (2.1,), then continuity is equivalent to the boundedness
of l{u) on the surface of the unit sphere §; = {u: |ui = 1}, or, similarly,

()] < clul (215)

forallue H.
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The thcorem of F. Riesz asserts that a linear functional / on H may be
written in the form of a scalar product

lu) = (u, v),

witere the element v is uniquely defined by I(u). The quantity {v|| is called
the norm |1 of the linear functional . It is clear that ||l|| = sup, .y (| [u)l/|lul)
is the smallest of all possible constants ¢ for which (2.1,) holds. Let us pass
now to the linear operator on H. An operator A, defined on some set 2(A)
ol H, assigns to each element u € Z(A) a certain element v ¢ H this is usually
written v = Au or v = A(u). If the equality

A(Auy + puy) = AAuy) + pAus) .

holds on 2(A), then we say that A4 is linear (where it is assumed that 2(A) is
a linear set). If, in addition, there exists a constant ¢ such that, for all u € 2(A),

lAull < clul, (2.2)

then A4 is called a bounded operator on %(A). Such an operator may be
extended in a continuous way 1o the closure 2(4) in H (which will be a closed
subspace of H), in which case (2.2) will hold for all u € 2(A4). Such an operator
can be extended (in different ways if 2(4) # H) to all H and still have (2.2)
hold. We shall encounter various bounded operators defined on all H. The
smallest ¢ for which (2.2) holds for allu € H iscalled the norm of the operator 4,
so that

II Au ll

A
4l = sup =

We shali be interested in two classes of bounded linear operators. One of
them is the class of self-adjoint operators: an operator 4 is called self-adjoint
if, forall u, ve H,

(Au, v) = (4, Av). (2.3)

The spectrum of such an operator A is real and lies in the interval
[—1l4l, |4]l]. The other class is that of completely continucus opcrators.
An operator A is called completely continuous if it takes any bounded set
into a precompact set. The spectrum of such an operator consists of the
point zero, together with an at most countable set of eigenvalues whose
only possible point of accumulation is the point zero. Each of these eigen-
values, except perhaps the point zero, is of finite multiplicity. In view of
this, the eigenvalues may be enumerated in the order of decreasing modulus,
Al = |4;] 2 ..., with only a finite number of the 4,, on any circle of the
type [A| = |4,|. The point zero can be an eigenvalue of infinite multiplicity.

If the operator A is self-adjoint and completely continuous, then its
spectrum is real and discrete with a single possible point of accumulation
at zero. All eigenvalues, except perhaps zero, are of finite multiplicity, and
itis possible to arrange them in order of decreasing modulus: | 4,| > |4,] =...
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where 4, — 0 if k — oo (here each eigenvalue, except zero, is repeated ac-
cording to multiplicity). The corresponding eigenelements {u,} (ie., the
solutions of the equations Au, = A,u,) can be chosen in such a way that they
are mutually orthogonal and normalized. The closed subspace .# spanned
by thcm coincides with H if 4 = 0 is not a point of the discrete spectrum
(ie., if the equation Au = 0 has only the trivial solution u = 01in H). Other-
wisc the orthogonal complement of % in H will be the eigensubspace
of H corresponding to A = 0. Let us denote the set H© ¥ = N, and let
{1} be an orthogonal basis of N. Then any element u € H may be represented
in the form of the sum of two series

Ay
u= Z (u, wu, + Z (4, vy,
k=1 k=1

cach of which may contain a finite or infinite number of terms. We have

> =Y @u)+ ¥ (4002
. k=1

k=1

Au =3 Llu,uu, and [|Aul® = 3 Ax(u, w)*
k=1 k=1

Let us return now to the general completely continuous operator A and
formulate some well-known results related to solving equations of the form

u— Adu = v, " (24)

where v is a given element of a complex Hilbert space H and 1 is a complex
parameter.

For these equations we have the Fredholm solvability property, that is,
the three Fredholm theorems hold for equations (2.4):

(1) If the homogeneous equation (2.4), i.e., the equation

u— Adu =0, « (2.5)

has only the trivial solution, then (2.4) may be solved uniquely fof arbitrary
v € H. (In other words, this theorem asserts that the existence theorem follows
from the uniqueness theorem.)

(2) The homogeneous equation (2.5) can have non-trivial (i.., non-zero)
solutions for not more than a countable number of values {4,}, each of which
is of finite multiplicity. The set {4} cannot have a point of condensation A,
with | 4g] < oc. These cxceptional values { A} are called characteristic num-
bers for A. For the adjoint operator A* the characteristic numbers are

{4}, that is, the equation
u— Ad*u =20 (2.6)

has a non-trivial solution only for 4 = Z,, and the multiplicity of [, for A*
is the same as the multiplicity of 4, for A.

(3) Equation (2.4) with 4 equal to any one of the characteristic values A,
may be solved for those v, and only for those v, which are orthogonal to all
solutions of (2.6) corresponding to A = £,.
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Ii these orthogonality conditions are fulfilled, then (2.4) has infinitely
many solutions. All of them can be written in the form u = u, + Y 717 c;u;,
where u, is any solution of (2.4) with 4 = A, the ¢; are arbitrary constants,
and the u;, j=m,...,m+ p, are all linearly independent solutions of
(2.5) for A = 4,.

Such solvability takes place, for example, for linear algebraic systems in
which u and v are vectors with n components and A is a square matrix with
n? entries. The same thing is true of integral operators having a kerne! which
does not misbehave too badly.

In Chapter II we shall show that such solvability also takes place for the
basic boundary value problems for elliptic equations with bounded co-
efficients in a bounded domain. This is not obvious, for in these problems
one has to deal with unbounded operators, but they can be reduced to
equations of the type (2.4) with completely continuous operators 4.

We also recall a well-known fact related to the solvability of (2.4) with an
arbitrary bounded operator 4, namely, that such an equation may be solved
uniquely for all v € H with Asuch that 1] < 1/[ 4], and that its solution may
be represented in the form of a series u = v + 14v + 424%v + ... which
converges in H and also |lull < [[o|/(1 — | 4] |A]).

In this section we have formulated various theorems about bounded
operators in a complex Hilbert space H, which are also valid in real spaces
H. However. in studying the spectra of non-symmetric operators A acting
on a real space If we encounter in a natural way a larger complex space,
for the spectrum of such operators 4 may be complex. '

§3. Unbounded Operators

Let us recall certain facts about unbounded linear operators 4 on H. Such
operators are not defined for all elements u of H. The set on which A is de-
fined is called the domain of definition of 4 and is denoted by 2(A4). This
set is linear and, for all u, v € Z(A4) and for all complex numbers 4, u, satisfies

A(Au + pv) = AAu + uAv.

In contrast to the case of the bounded operators, a constant ¢ does not
exist in the case of an unbounded operator A for which (2.2) holds for all u
in Z(A). We shall consider only the case that %(A) is dense in H. The set of
values of A, i.e. the range of 4, will be denoted by Q?(A) so that A(2(A)) =
R(A) < H.

We shall be interested in unbounded operators arising from differential
expressions. To every such expression correspond various operators de-
fined by indicating their domain of definition. As an example, we consider
the differential expression Zu(x) = d*u(x)/dx? on the interval x € [0, 1],
taking as H the real functional space L,(0, 1). We can associate with & the
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operator A in this space which is defined on ail infinitely differentiable func-
tions with support in (0, 1). For u(x) in 2(A) the operator A is calculated by
Au = Lu = d’u(x)/dx>. Tt is easy to see that 4 is unbounded on 2(4). With
the expression Zu we can associate another unbounded operator 4 whose
domain of definition is the set of all infinitely differentiable functions on
[0, 1]. On these functions, A is calculated in the same way as A on 2(A),
namely, Au = d*u(x)/dx®. There is a natural ordering between 4 and
A: X A) c 9(,5) and Au = Aufor u € 9(A). In asituation like this we say that
the operator A is an exrension of the operator A. It is clear that the domain of
definition for .# can be chosen in an infinite number of ways, and each time
we are led, generally speaking, to another unbounded operator with other
properties. The operators 4 and A described above have fundamentally
different properties. For example, 4 satisfies the relationship

1 2

e C2 v dx = (u, Av). ' 3.1)

(Au, v) =

which is easily verified by integration by parts, where u(x) and v(x) in (3.1)
are arbitrary clements of &(A). For the operator A this property does not
hold, for

du =1

(Au, r) = (u, Av) + . (3.2)

x=0 dx

and the sum of the last two terms on the right-hand side of (3.2) is not zero
for all u(x) and u(x) in @(A). The property (3.1) guarantees the symmetry
of A4, but the operator 4 is not symmetric. As is well known in general
operator theory, symmetric operators possess a large number of nice prop-
erties. The theory of symmetric operators has been well developed and can
be used for studying specific classes of differential operators. One of the most
important concepts is that of a self-adjoint operator,
An operator 4 is called self-adjoint if it is symmetric, that is, if

(Au, v) = (u, Av) forall u, ve Z(A), (3.3)
and if the identity
(A, v) = (u, w), (3.4)

where ¢ and w are fixed and u is an arbitrary element of “#(A4), implies
that v e (A} and w = Ar. In other words, 4 is self-adjoint if its adjoint
operator A* has the same domain of definition 2(4) and 4 = A* on Z(4).
The identity (3.4) defines the domain of definition of A* and its values on the
domain, namely, those v for which there exists w satisfying (3.4) for all
u € 2(A) constitute Z(4*) with 4*v set equal to w. In the majority of cases
of operators A arising from differential expressions it is easy to verify the
validity (or non-validity) of (3.3) by means of integration by parts. It is
considerably more difficult to describe the domain Z(A4*) for these operators
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and to determine whether it coincides with %(A4) or not. For differential
expressions containing partial derivatives, this is usually carried out in some
“roundabout” way, most often with the use of inverse operators which turn
out to be bounded. In point of fact, these “roundabout” methods are used
for studying elliptic differential equations under one set of boundary con-
ditions or another. For bounded operators 4 defined on all H, the seli-
adjointness is a consequence of their symmetry.

Let us return to the example of the differential operator Yu = d*u/dx*.
We have aircady determined above that the corresponding operator A4 is
symmetric. It is not difficult to see, however, that it is not self-adjoint.
Actually, (3.3) holds for A not only for u and v in Z(A), but also, for example,
for u e @(A) and v e 9(A). This shows that Z(4*) is larger than %(A). There
arises the natural question: Can A be extended so as to be self-adjoint? It
turns out that it can be done, and, indeed, in an infinite number of ways.
The general theory of operators gives the first step of such an extension;
this is the procedure of the closure of an operator. The procedure consists
of the following. Let A (where 4 may be non-symmetric) be defined on
a dense set 2(A) of the space H. We adjoin to Z2(A4) all elements u which
are limits of those sequences {u,} of Z(A) for which {Au,} converges to some
element v. We define v = Au, where the symbol A4 denotes the closure of A.
The set #(4), supplemented by all such clements u, constitutes Z(A), the
domain of definition of 4. However, this procedure does not always lead to
a linear operator A, for the definition requires that it be defined in a single-
valued way on 2(A), which is equivalent to the requirement that it have the
value 0 on the zero element. Actually, in the procedure described above,
we can encounter the case where u, converges to u = 0 and Au, converges
to v # 0. If this happens, then, by what was said above, we should set 40 equal
to v # 0, and, by the same token, obtain an operator 4 which is not linear.
Examples show that the situation described is possible for certain unbounded
operators, and consequently an arbitrary unbounded operator does not
have a closure.

It is not difficult to prove that a necessary and sufficient condition that
an operator 4 have a closure is that the domain of definition of the conjugate
operator A* be dense in H. This criterion is easy to verify for operators
defined by differential expressions with coefficients that are “not too bad,”
so that such operators have a closure.

In particular, the operator A that we defined above by #u = du/dx?
has a closure. But then the question arises: How do we find the closure 4
for A, that is, which functions are to be adjoined to 2(A4) and how do we
calculat¢ the operator A for them? It turns out that it is not a simple,thing to
answer this question, especially in the case of differential expressiops with
partial derivatives. The answer requirés the extension of the notion of
derivative and the introduction of what are called “generalized derivatives.”
We shall go into this notion in more detail in the next section in view of its
cardinal importance for all problems which will be investigated in this book.



