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PREFACE

These notes are based on the topics courses given at the University of
California, Berkeley, in Winter 1980 and at the University of California, Los
Angeles, in Winter 1981. The subject 1s Nielsen fixed point theory which is
becoming increasingly important in geometric topology and, potentially, has
applications in analysis. The approach is via covering spaces. This approach
is both natural and fruitful, but no reference in the English language has
been easily available. The prersquisite is minimal: the classical covering
space theory and homology theory for compact polyhedra.

The Introduction explains what Nielsen theory is about. Chapter I gives
the basic notions of the theory, while Chapter II is devoted to computational
methods. In Chapter III we broaden the scopz and introduce the Nielsen type
theory for periodic points. Chapter IV provides an exposition of the latest
progress in the Nielsen theory for fiber maps. Another chapter in the original
courses is now sketched as §I.6 because the material is easily available in the
literature. The Historical Notes and Bibliography attached are by no means
complete.

The author wishes to express his gratitude to Professor T. H. Kiang who
introduced him into this subject years before and whose book [Kiang (1979)]
has a great influence oa the presentation here. He wishes to thank Professors
R. Brown and H. Schirmer for their interest in the course and their zncourage-
ment and helpful comnsnts. He 1s espscially indebted to Professor Brown for
his help with language and in proofreading. He also wants to thank the
Department of Mathematlcs at UCIA for hospitality during his visit and for
arranging the typing of these notes. He thanks Bob Neu for his skillful typing

of this manuscript.

Peking, China -- Boju Jiang
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Introduction

Let X be a space, and let f:X » X be a self-map. A fixed point of f
is a solution of the equation x = f(x). The set of a2ll fixed points of f ws=
will denote by Fix(f). Fixed point theory studies the nature of the fixed
point set Fix(f) in relation to the space X and the map f, such as:
existence (is Fix(f) # ¢ ?); the number of fixed points #Fix(f) (we will
use the notation #5 for the cardinality of a set S); the behavior under
homotopy {(how Fix(f) changes when f changes continuously); etc.

Fixed point theory started in the early days of topology, because of its
close relationship with other branches of mathematics. Existence theorems are
often proved by converting the problem into an appropriate fixed point problem.
Examples are the existence of solutions for elliptic partial differential
equations, and the existence of closed orbits in dynamical systems. In many
problems, however, one 1is not satisfied with the mere existence of a solutien.
One wants to know the number, or at least a lower bound for the number of
solutions. But the actual number of fixed points of a self-map can hardly be
the subject of an interesting theory, since it can be altered by an arbitrarily
small perturbation of the map. So, in topology, one proposes to determine the
minimal number of fixed points in a homotopy class. This is what Nielsen fixed
point theory is about. This is the theme of these notes.

Perhaps the best known fixed polnt theorem in topology is the Lefschetz
fixed point theorem.

THEOREM (Lefschetz 1923; Hopf 1929) Let X be a compact polyhedron, and
let f:X— X be a map. Define the Lefschetz number L(f) of f to be

L(£) := 2 (-1)¢ trace (£, + B, (X:0) = H (6:0)) ,
q

where H,(X;Q) 4is the rational homolozy of X. If L(f) # 0, then every map
homotopic to f has a fixed point.

The Lefschetz number is the total algebraic count of fixed points. It is
a hamotopy invariant and is easily computable. But it counts the fixed points
"py multiplicity", Jjust like what one does when one says an equation of degree
n has n roots. So, the Lefschetz theorem, along with its special case, the
Brouwer fixed point theorem, and its generalization, the widely used Leray-
Schauder theorem in functional analysis, can tell existence only.

In contrast, the (chronologically) first result of Nielsen theory has set
a beautiful example of a different type of theorem.

THEOREM (Nielsen-Brouwer 1921) Let f :T2—4 T2 be a self-map of the
torus. Suppose the endomorphism induced by f on the fundamental group

7T1(T2) ~ 7 ® Z 1is represented by the 2 x 2 Iintegral matrix A. Then the
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least number of fixed points in the hamotopy class of f equals the absolute
value of the determinant of E - A, where E 1is the identity matrix; in
symbols,

Min{#rix(g) | g~ £} = [det(E - A)] .

It can be shown that det(E - A) is exactly L(f) on tori. This latter
theorem says much more than the Lefschetz theorem specialized to the torus,
since it gives a lower bound for the number of fixed points, or it confirms
the existence of a homotopic map which is fixed point free. The proof was via
the universal covering space R2 of the torus. From this instance evolved
the central notions of Nielsen theory -- the fixed point classes and the
Nielsen nunber.

Roughly speaking, Nielsen theory has two agspects. The geametric aspect
concerng the camparison of the Nielsen number with the least number of fixed
points in a homotopy class of self-maps. The algebraic aspect deals with the
problem of computation for the Nielsen number. We choose to concentrate more
on the latter aspect, partly because of the richness and difficulty of the
theory, partly because of its Importance to applications. As to the former
aspsct, we will confine ourselves to quoting the main results without proof,
and recomend the books [Brown (1971)], Chapter VIII, and [Kiang (1979)],
Chapter IV, for excellent expositions of earlier results, and the paper
[Jiang (1980)) for the latest improvements and simplifications. We will also
restrict our exposition to self-maps of compact polyhzdra, since thare seems
to be no esgential difficulty in extending further to compact ANRs or even to
compact maps on noncompact ANRs by m=ans of the method of domination
(cf. [Brown (1969), (1971)] and [Youl).

Nielsen theory is based on the theory of covering spaces. We will take
this point of view consistently, as Nielsen himself did. An alternative way
is to consider nonempty fixed point classes only, and use paths Instead of
covering spaces to define them. This is certainly more convenient for some
geometric questions. But the covering space approach is theoretically more
satisfactory, especially for computational problems, since the nonemptiness
of certain fixed point classes 1s often the conclusion of the analysis, not
the assumption.

Now let us introduce the basic idea of Nielsen theory by an elementary
example.

PROPOSITION. Let f :Sl—a Sl be a self-map of the circle. Suppose the

degree of f is d. Then thz least number of fixed points in the homotopy

class of f is ll - a
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1
Proof. Let S be the unit circle on the complex plane, i.e.
1 1
7= {z ¢¢ l iz| =1}. Let p:R— S be the exponential map

ic
p(0) = z = e . Then 9 1is the argument of 2, which is a multi-valued

function of z. For every £ :Sl-4 Sl, one can always find :grgument
expressions” (or 1iftings) f: R— R such that f(eie) = eif(e)

whole series of them, differing from each other by integral multiples of 2.

, 1in fact a

For definiteness let us write ?b for the argument expression with ?O(O)
lying in [0,27), and write fk = %b + 2km. Since the degree of £ 1s 4,
the functions ?k are such that ?k(e + 27 = fk(e) + 2d7. For example, if
£(z) = —zd, then ?k(e) = a0 + (ex + ).

fiz),
7 (0)
for some k. On the other hand, if 6 1is a fixed point of ?k’ q is an
integer, then © + 2q7 1s a fixed point of ?} iff £ - k= q{(l -~ d). This

~

foilows from the calculation fﬂ(e + 2qm) = ?k(e +2qm) + 2(£ - X)T

= fk(e) + 2qd7 + 2(2 - k)T = (6 + 2q7) + 2n{(£ - k) - q(1 - 4)}. Thus, if

£ #kmod (1 -d), then a fixed point of gk and a fixed p?}nt of %} ~can

never correspond to the same fixed polnt of f, i.e. pFix(fk) N pF&x(fg) = g.
So, the argument expressions fall into equivalence classes (called lifting

2 mod (1 - d), and the fixed polnts

It is evident that if =z = eie is a fixed point of f, i.e. 2z

1

1

then © 1is a fixed point of some argument expression of f, 1il.e. ©

i

classes) by the relation f, ~ £, iff x
of f split into |l - d| classes (called fixed point classes) of the form

P Fix(?k). That is, two fixed points are in the sam2 class iff they come from
fixed points of the same argument expression. Note that each fixed point class
is by definition associated with a lifting class, so that the numbar of fixed
point classes is |1 - 4] 1f & # 1, and is « if d = 1. Also note that

a fixed point class need not be nonempty.

Now, to prove that a map f of degree 4 has at least Il - di fixed
points, we only have to show that every fixed point class is nonempty, or
equivalently, that every argument expression has a fixed point, if a# 1.

In fact, for each k, by means of the equality ?k(e + 2m) - ?k(e) = 2dr, it
is easily seen that the function © - Ek(e) takes different signs when ©
approaches +x, hence f_ has at least one fixed point.

k
That ]l - d| is indeed the least number of fixed points in the homotopy

d
class is seen by checking the special map f(z) = -z . a

The following chapters can be considered as generalizations of this

simplest example. See the table of contents and the introductory paragraph of

avery chapter.



CHAPTER 1

FIXED POINT CLASSES AND THE NIELSEN NUMBER

In this chapter we introduce the basic notions of Nielsen theory. The
simple example of Sl—4 Sl in the Introduction is generalized to self-maps
of a polyhedron X, with the universal covering space i of X playing the
role of the exponential map R-— Sl. The basic invariance theorems are in
§§k-5. Section 3 is a brief introduction to the algebraic count of fixed
points -- the fixed polnt index. We conclude this chapter by relating the
Nielsen number to the least number of fixed points in a homotopy class, thus
justifying the important position of the Nielsen number ir the fixed point

theory.

1. LIFTING CLASSES AND FIXED POINT CIASSES. We always assume X to be
a connected compact polyhedron. It 1s well known that X has a universal
covering space. (Actuslly the material in §81-2 makes sense for any X with
a universal covering space.) References on covering spaces: [Massey],
[Spanier].

Let p: §~4 X be the universal covering of X. ~

1.1 DEFINITION. A 1ifting of amap X —— X is amap X —= X such
that po f=rfo p. A covering translation 1s a map i AN E such that

Po 7y=7p, 1l.e. a lifting of the identity map.

B X —L=3
. .
X —~———=X X=X

1.2 PROPOSITION. (1) TFor any %, € X and any ;0, ;6 € p_l(xo), there

is a unique covering translation 7 : §—+ i such that 7(50) = 56. The
covering translations of X form a group 8 = 9(X,p) which is isomorphic to

Tl'l(X).

(ii) Iet f:X -+ X be a map. For given X, € X and x; = f(xo), pick

X, € p_l(xo) and X, ¢ p-l(xl) arbitrarily. Then, there is a unique lifting

0 1
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F of f such that ?(?(O) = ;1'
(1i1) Suppose f is a lifting of f, and &, B ¢ 8. Then £ o fooa is

a lifting of f.

(iv) For any two liftings b and ?‘ of f, there is a unique Yy € §
such that f'= 7o £

PROOF. (1) and (ii) are standard theorems in covering space theory.
(i1i) and (iv) follow from Definitions (1) and (ii). 0

%

fixed point of & lifting f of f,

Then, a 1lifting f' of f has
-1

1.3 LEMMA. Suppose X € p-l(x) is a
and v € § 1s a covering translation on %
7(;) € p-l(x) as a fixed point iff Fre o Fooy

FROOF. "If" is obvious: 1'(»(X)) = 7 ¢ To 7_1(7(;)) = 70 F(X) = 7(¥).

"Only if": Both T' and yo fo 7-1 have 7(x) as a fixed point, so

they agree at the point 7(;). By Proposition 1.2 (ii), they are the same

lifting. ]
1.4 DEFINITION. Two liftings f and T' of f:X - X are said to be

conjugate if there exists 7 € § such that Froyo Foo,l Lifting

classes := equivalence classes by conjugacy. Notation:

(Fl=tyoFo st | yest.

1.5 THECREM. (i) Fix(f) = Up D Fix(%).
(11) p Fix(P) = p Fix(F') £ [£) = [£'].
(111) p Fix(®) np Fix(F') = ¢ 1r [F1 # [F'].
PROCF. (1) 1If x, € Fix(f), pick §0 ep (xo). By Proposition 1.2 (ii)
there exists f such that ?(;O) = ;0. Hence Xy € P Fix(%).
(11) 1f Fr=y0Tfo 7_1, then by Lemma 1.3, Fix(%’) =7 Fix(g), so
that p Fix(%') = p Fix(%).

(111) If x, € P Fix(g) nNop Fix(%'), there are ;0’ x! € p-l(xo) such

0 ~ ~ "~ 0
that x, € Fix(f) and x| € Fix(f'). Suppose x) = 7%. By Lerma 1.3,
Fraoyo Fo 7-1, hence [f] = [?‘]. o

1.6 DEFINITION. The subset D Fix(g) of Fix(f) 1is called the fixed
point class of f determined by the lifting class (1.
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1.7 THEOREM. The fixed point set Fix(f) splits into a disjoint union

of fixed point classes. ]
EXAMPLE. Lifting classes and fixed point classes of the identity map
idX X X,

A lifting class = a conjugacy class (in the usual sense) in 8.

P Fix(id'i) = X.

p Fix(y) = § otherwise.

1.8 REMARK. A fixed point class is always considered to carry a label --
the lifting class determining it. Thus two empty fixed point classes are
considered different if they are determined by different 1lifting classes.

1.9 DEFINITION. The number of lifting classes of f (and hence the
number of fixed point classes, empty or not) is called the Reidemeister number
of f, denoted R(f). It is a positive integer or infinity.

EXAMPIE. R(f) = 1 if X is simply-connected.

Our definition of a fixed point class is via the universal covering space.

It essentially says: Two fixed points of f are in the same class iff there
is a lifting ‘f" of f having fixed points above both of them. There is
another way of saying this, which does not use covering space explicitly,
hence is very useful 1n identifying fixed point classes.

1.10 THEOREM. Two fixed points x, and x, of f:X— X belong to

0 1

the same fixed point class iff there is a path c¢ from x0 to X such that

¢ ~f > c (homotopy rel endpoints).

PROOF., "Only if". Fixed points X, and x, are in the same class,
then there exists a 1lifting f:X- X and points ;0

€ p-l(xl) such that F(;O) = ;0 and F(;l) = x

Take a path T 4in X from ;0 to ;c'l. Since X is simply-connected,

€ p_l(xo) and
;l

~

c ; ° 8' Projecting down to X,

foc
we have .
X *1 X
cxfooec %
where ¢ = po C. e e e e P
"If". Suppose X, € P Fix(T),
~ —l ~ _ ~ f o C
X, € P (xo) and ?(xo) -~x0. We X
want to prove Xx; € p Fix(f), i.e. x x
~ -1 0 1
there exists X, €p (xl) such -

~
.

that I(X)) = ¥

1 - ~ -
Lift the path ¢ from 20 to get a path ¢ in X. Then f ° & projects
to fo c, hence To ¢ is the lift of f o c from 550.

Since ¢ ~f > ¢, their lifts from the same starting point ?0 should

have the same endpoint. Hence ;l = ?(';l)’ where ;l is the other end of c. O
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1.11 REMARK. Theorem 1.10 can be considered as an equivalent definition
of a non-empty fixed point class. Its advantage: It works directly on X,
hence is more convenient in geometric questions. Its disadvantage: It pays
attention only to non-empty fixed point classes, hence is not satisfactory
when considering the influence of homotopy on fixed point classes.

1.12 THEOREM. Every fixed point class of f:X— X 1s an open subset

of Fix(f).
PROOF. Given a fixed point xO of f, we want to find a neighborhood
U of XO such that any fixed point X, € U TDbelongs to the same class.

Since X has a universal covering, X is locally path-connected and

semilocally l-connected. There 1s a neighborhood W of X such that every

loop In W at xo is trivial in X. There also is a path-connected neighbor-

hood U of x, such that U=WnN f'l(w).

Now, if X) € U n Fix(f), take a path ¢ in U from X, to x,, then
both ¢ and f° ¢ arein W, hence c ~fo c. Thus Xy Xqp are in the
same class by Theorem 1.10. a

1.13 COROLIARY. FEvery map f:X-— X has only finitely many non-empty
fixed point classes, each a compact subset of X. ]

1.14 COROLIARY. A continuum of fixed points lies in a single fixed point
class. a

EXERCISES. 1. let f: sto st be of degree d. R(f) =

2. Let T2 be the torus, f: Tz-» T2 the induced homomorphism on

H (‘1'2) given by an integral 2 x 2 matrix A. R(f) =
3. Discuss R(f) for f: RF— R

2, THE INFLUENCE OF A HOMOTOPY. We use the following notation for a

0~ "1
Given a hoamotopy H = {ht] : fo ~ f we want to see its influence on

homotopy: H:{ht}telzf ~f X+ X, or H:XxI-X.

l’

fixed point classes of fo and fl.

2,1 DEFINITION. A homotopy H = {?{t} :X- X 1is called a lifting of the
homotopy H = {ht}, if Ht is a lifting of h, for every t ¢ I.
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~

2.2 BASIC OBSERVATION. Given a hamotopy H: fo fad fl and a lifting fo

of fo, there is a unique lifting H of H such that HO = 'fo, hence they

determine a lifting f’l of fl. (Reason: Unigque lifting property of

covering spaces.) Thus H glves rise to a one-one correspondence from

liftings of £ to 1liftings of £

0 1°
~ H ~
fO AN fl
U
fo NSNS fl

This correspondence preserves the conjugacy relation:

implies {'/O'ﬁtofl}:yo'f“ooy_l:yofoy .

~ T

{n3:% N

t 0

2.3 DEFINITION. Let H: fo ~ fl be a homotopy and %‘i be a lif'ting

of f,, i = 0,1. We say that the lifting class ['fvo] (and the fixed point
class D Fix(%o) of fo) corresponds to the lifting class ['fl] (and the
fixed point class P Fix('i\"l) of fl) via the homotopy H, 1if H has a

lifting H: fo ~ fl'

2.4 THEOREM. If fo ~ f then there is a one-to-one correspondence

l’
between fixed point classes of fO and those of fl. Hence R(f) is a
homotopy invariant. d
EXAMPIE 1. A non-empty fixed point class may disappear under a homotopy.
Consider maps Sl——» Sl. The universal covering is p: R— Sl, given
i6
by ©6i=» e .
€
Let H = {ht Tz z &'t 1,

~ ~ ~ 1 ~
H= {ht 16+ O+ te]. Then D Fix(ho) =8 but p Fix(hl) = ¢.

where e > 0 is small. Take the lifting

EXAMPLE 2. The correspondence may depend on the homotopy H.

-2
Consider maps Sl—’ Sl. Let fo = fl: z » z . Consider two homotopies
-2 2Tti
T — T . . -~ = N -~
H_{ht.z»-oz }.fo_fl and H {ht N}.io_fl.
Take 'i‘o : 04 -20, then H' and H 1ift to H' = {hi:0w= -281 and

~

H= {'ﬁt . 0rs ~20+27t} respectively. So f, corresponds to fl:©w -26

-2
AR A

0
vie H', but corresponds to £, :Ow -20 + 27 via H. Thus D Fix(fo) = {1}

corresponds to P Fix('f"i) = {1} wvia H', but corresponds to
3] Fix('f"l) = {e2Trl/3'} via H.
We now turn to another view of the above correspondence.
2.5 DEFINITION. Every homotopy H:X X I— X gives rise to a level~

preserving map H:X X I— X X I in an obvious way:

H(x,t) = (H(x,t),t) = (ht(x),t) .
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The map M will be called the fat homotopy of H, and h, will be called

t
the t-slice of . Similarly, for a subset A C X x I, the subset
A, :={x ¢ X1 (x,t) ¢ A} c X will be called the t-slice of A.

t
The advantage of considering T 1is that it 1s a self-map of X x I,

so we may talk about its liftings and fixed point classes. Note that the
universal covering of X x I 1s pxid: i X I—= X x I.
2.6 OBSERVATION. A lifting ﬁ of H «—» A lifting H  of H.

E is a lifting of H = H is a lifting of H.

?O and ?1 correspond via H =% ?’O and ?l are slices of an I
2.7 THEOREM. Let H: fo ~ fl
Let ?0’ ?l be liftings of fo, fl respectively, and let IFO =D Fix(f’o)
and F, = p Fix('fl) be fixed point classes of f

be a homotopy, H be its fat homotopy.

0’ fl respectively. Then

[?0] corresponds to [?l] via H iff they are, respectively, the 0- and

1-slices of a single lifting class of H; and ]FO corresponds to ]Fl

via H iff they are respectively the 0- and l-slices of a single fixed

point class of H. 0
This theorem is nothing but a restatement of the basic definition 2.3 in

the language of fat hamotopies. But it does reduce the identification of a

correspondence via homotopy to the identification of a fixed point class.

Thus, by 1.1k we have

2.8 COROLLARY. Let H:f, =~f, De a homotopy. Let X, ¢ Fix(f,) and

x) € Fix(fl). If (xO,O) and (xl,l) are connected by a continuum of fixed

points of the fat homotopy IH, then the class of xo corresponds to the

class of Xy via H. 0

Combining Theorem 2.7 with Theorem 1.10, we get
2.9 THEOREM. Let H = {htl : fO ~ £, :X— X be a hamotopy, x; € Fix(fo)

and Xq € Fix(fl). Suppose XO belongs to a fixed point class ]FO of fO’
and Xy belongs to a fixed point class ]Fl of f‘l. Then IIFO corresponds
to ]Fl via H 4iff there is a path c¢ = {xt}tel in X from X to %

such that fh (x,.)} = {x,} with endpoints fixed.
t't t
H 2.7

PROCF. T, > JF14=>(XO,0) and (xy,1)
lie in the same fixed point class of H (lwl—o-)
there is a path {(xt,st)} in Xx I from (xO,O) e
to (xl,l) such that {JH(xt,st)} = {(ht(xt),st)] o
{(xt,st)}, which is obviously equivalent to
0, (x)] = (%) g £(e)]

2.10 REMARK. This theorem can be considered as an equivalent definition

(£,(c))

of correspondence via a homotopy, for non-empty fixed point classes. Compare
Remark 1.11.
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There is still another geometric characterization of correspondence via
& homotopy.

2.11 DEFINITION. A deformation of a homotopy H: fO o~ fl: X— X into

noth ' ~ i : ~ T i =
a er H fo £, is & continuous family {Hu. Ty = fl}ueI with Hj = H
and Hl = H',

2,12 OBSERVATION. If two homotopies H, H': fo ~ fl are deformable into

each other, then they give rise to the same correspondence from the fixed point
classes of fO to the fixed point classes of fl. In fact, if H 1ifts to

ﬁ: fb ~ ?i: f-+ f, then the deformation {Hu}ueI 1lifts to a deformation
{Hu: fO ~ fl}uel'
2.13 THEOREM. ZLet H: fo ~ fl: X—+ X be a homotopy, X € Fix(fo) and

Xy € Fix(fl). Then, the class of x0 corresponds to the class of Xy via H

iff H is deformable into a homotopy H' = {h%}tel such that there is a path
— 1

c= {xt}tEI from x, to x, with x e Fix(ht) for all t e I.

PROOF, The "if" part follows easily from Observation 2.12 and Theorem 2.9.
It remains to prove the "only if" part.

By Theorem 2.9, there is a path ¢ = {xt} from X to X such that
{ht(xt)} ~ {x.}, i.e. there isa D:IX I— X with D(0,s) = Xy
D(1,s) = x5 D(t,0) = ht(xt), and D(%t,1) = x, forall t,s ¢ I

The polyhedron X is uniformly locally contractible (ef. [Brown (1971)],
p. 39), i.e. there exists amap 7:W x I— X, where W= {(x,x') e Xx X |
d(x,x') < 8} for some ©> 0, such that r(x,x',0) = x, 7(x,x',1) = x',
and 7{(x,x,t) = x for all x, x' ¢X, t e I.

Let G: {(x,t) ] (x,xt) € W} X I—= X be defined by

ht(y(x,xt,Zs)) if s <
G(x,t,s) =

ol O

D(t,2s -1) if s >
It is obviously continuous. Let ©(t) = 8t(1 - t). Define a deformation
: b
{Hu}ueI Xx I+ X by
H(x,t) if d(x,xt)

v

e(t) ,
Hu(x,t) =

G(x,t,u—ud(x,xt)/e(t)), if d(x,x.) <6(t) >0 .

)
Note that {Hu} is well-defined. The continulty is obvious except at the

points with d(x,x, ) = 6(t) = 0, i.e. at points with x = Xg» t=0 or

X = X t = 1. The contimuity at these points follows from the fact that

l’
G(xO,O,s) = xo and G(xl,l,s) = X for all s ¢ I. It is easy to check that
Hu: fo ~ fl and HO = H, and that Hl = H' satisfies H'(xt,t) = X, i.e.
X, € Fix(h,'c). a
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EXERCISE. Let H, H' :fO ~ fl: X— X be two homotopies connecting fO

and fl. Show that: H and H' give the same correspondence from liftings

of fO to liftings of fl

. R . .
paths {ht(x)'}tEI and {ht(x)}t€I are hanotopic with endpoints fixed.

iff for some (hence every) point x ¢ X the

3, THE FIXED POINT INDEX. The fixed point index is an indispensable
tool of fixed point theory. It provides an algebraic count of fixed points in
an open set. There are many different approaches to the fixed point index,
all turn out to be equivalent, hence an axicmatic approach has emerged and
existence and uniqueness proved. Instead of giving a self-contained treatment,
we will introduce a naive, step-by-step construction of this index, and list
(without proof) the most useful properties. The serious reader may consult
the books [Alexandroff-Hopf], [Brown(1971)] and [Dold (1972)].

(A) THE INDEX OF AN ISOIATED FIXED POINT IN R". A reasonable algebraic
count of fixed points should be a generalization of the notion of multiplicity

for zeros of a complex analytic function.

Suppose Hflj U’—Eﬁ Rn, and a ¢ U 1is an isolated fixed point of f.

Pick a sphere Sz-l centered at a,
small enough to exclude other fixed n-1
points. On Sz_l, the vector

x - £(x) £ 0, =0 a direction field
n-1 n-1 ' _ o x - fix
pesi o s ) = T

is defined.
3.1 DEFINITION. index(f,a) = degree of @.
This definition doesn't depend on the radius of Sz-l.

EXAMPIE 1. n = 1. The local picture in JR2 = Rx R of an intersection

of the diagmal with the graph of f.

index = 1 index = -1 index = 0

EXAMPIE 2. n = 2. Suppose f has a complex analytic expression z# f(z)
Then a fixed point of f is nothing but a zero of the function z - f£{z).
Suppose zO is a fixed point of f. It follows from the theory of analytic
functions that the multiplicity of the zero zg = the variance (counted by

multiples of 27) of arg(z - f(z)) when 2z moves around g, once = deg .



