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1. HISTORICAL INTRODUCTION

by M. von LAUE

THE science which the International Tables are in-
tended to serve is concerned primarily with the
atomic theory of crystals, and secondarily with
optical theory as applied to the short wavelengths
of X-radiation. Moreover, now that we know of
electron and neutron diffraction by crystals, it
must include quantum mechanical wave theory,
which is also, as it happens, of importance in the
branch of optics already mentioned. This intro-
duction has to deal, therefore, with the history of
these three branches of physics. Let us begin with
the most important and the oldest branch, the
theory of crystals.

We may take as a beginning the small pamphlet
written in the year l1¢ll Ry the great astronomer
Johannes Kepler, wh.h .bears the title Srrena
seu de nive sexangula, or in translation ‘‘A New
Year’s present; ou hexagonal snow.”” It is dedi-
cated to one of his patrons at the court of the
Emperor Rudolph II, whose friendship Kepler en-
joyed during his stay in Prague. Kepler's astrono-
mical works show that throughout his life he be-
lieved that the material world was the creation of
a Spirit delighting in harmony and mathematical
order. Had he not tried in his youth to deduce the
radii of the planetary orbits from the dimensions
of certain regular polyhedra, and did not his prin-
cipal work (1619) bear the title Harmonice
Mundi? It need not surprise us, therefore, that
it was the appearance of these regular and beauti-
fully shaped snowflakes rather than the appearance
of the crystals of the mineral world that inspired
Kepler with the idea that this regularity might be
due to the regular geometrical arrangement of
minute and equal brick-like units. Thus he was led
to think of close-packed spheres, and, although he
did not coin the expression ‘‘space-lattice’” and
although his development of these ideas is not
always correct, we can find among his itlustrations
the first pictures of space-lattices.

Nevertheless Kepler felt uneasy about these
speculations. He realised, quite correctly, that his
way would lead to an atomic theory; yet the idea
of the atom, as handed down from the ancient
Greeks, lacked an empirical foundation and there-
fore has often been the subject of excessively fanci-
ful speculation even until well into the nineteenth
century. Hence it was not without reason that the
natural scientist in Kepler mistrusted this idea and

would not take it seriously. He toyed with the
double meaning of the word ''nix,”” which in
Latin means snow but in German dialect ‘ ‘nichts™”
—-nothing. And so from beginning to end he re-
peatedly explained the whole idea away as a mere
“‘nothing.”’

In these circumstances the little pamphlet, even
though it was printed, naturally made no deep im-
pression on his contemporaries, and was gradually
forgotten. Crystallography took another direc-
tion, that of the description of the external form
of crystals, after Niels Stensen had in 1669 pointed
out the existence of characteristic angles between
crystal faces. By devious ways this led eventually
to the Millerian indexing of faces (1839), to the
laws of symmetry and to the classification of crys-
tals in 32 classes, which was accomplished in 1830
by Johann Friedrich Christian Hessel and in 1867,
independently and rather more simply, by Alex
Gadolin.

This consistently phenomenological approach
was not abandoned, even though the crystal-optical
discoveries made early in the nineteenth century
by such men as Baptiste Biot, David Brewster,
Augustin Fresnel and Frederick William Herschel
had led to the development of the important idea
that the same laws of symmetry which were valid
for the positions of crystal faces also controlled the
physical events inside the crystal. This was first
made clear by Franz Neumann in 1833.

Apart from these trends of thought, however,
ideas about the internal structure of crystals con-
tinued to appear. Thus Christiaan Huygens’ funda-
mental work on the wave theory of optics, Traité
de la lumiére, which was published in 1690, con-
tains among other things a wave-theoretical ex-
planation of birefringence, and ascribes to calcite
a structure made up of ellipsoidal particles; the
threefold periodicity of this arrangement charac-
terises it as a space-lattice, although Huygens, like
Kepler, did not define it as such. It was the clea-
vage along three planes which led him to this idea.
Like Kepler’s pamphlet, however, this part of the
otherwise famous work was soon forgotten. Inde-
pendently of Huygens, crystal cleavage in general
led Torbern Bergman in 1773 and René Just Haiy
in 1782 to suppose that all crystals consist of a kind
of masonry of equal, parallelepipedal building
bricks. That these ‘‘molécules soustractives’’
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were often supposed to consist of ‘molécules inté-
grantes’’ of other shapes need not concern us here.
A structure of this kind involves a space lattice,
and Haiiy could therefore easily go on from this
idea to deduce the laws governing the geometry of
crystal faces, already empirically known. But it
would be premature to describe this as an atomic
theory of crystals. No wonder! For the scientific
theory of atoms had yet to be created, in its own
good time, by the great chemists of the eighteenth
century. The theorem that a lattice may be divided
into unit cells, as we should say today, in an
infinite number of different ways would have made
no physical sense whatever to Haiiy (although he
would have admitted, of course, its geometrical
correctness), since the shape of the ‘‘molécules
soustractives’’ was fixed unambiguously by Nature.
Thus the true beginning of the atomic theory of
crystals must be dated from a paper published in
the year 1824 by Ludwig August Seeber, physicist
in Freiburg, in Gilbert’s Annalen der Physik, vol.
16, page 229. Seeber, who certainly knew of
Haliy’s works but probably did not know the part
we have quoted from Huygens’, was trying to find
an explanation of the thermal expansion and the
elasticity of solids, of which he quite rightly be-
lieved crystals to be the normal type. He found
the bricklike structure unsuitable for his purpose,
since, he argued, the only view compatible with
this picture would be that the single bricks them-
selves possess these physical properties, which does
not solve the problem but only pushes it one step
farther back. Seeber, whose outlook was essen-
tially modern, introduced instead the idea of a
structure consisting of chemical atoms or molecules
(at the time these two concepts were not strictly
differentiated), whose mutual distances are deter-
mined by the balance of attractive and repulsive
forces, thus forming a system of stable equilibrium,
External disturbances cause certain changes of
position—this is his explanation of elasticity—
and possibly also elastic vibrations about the equi-
librium positions. Seeber, of course, did not
visualise thermal vibration: he explained thermal
expansion in terms of the temperature dependence
of the attractive and repulsive forces. In order to
retain the sound parts of Haiiy’s postulate, Seeber
placed each of his molecules, assumed by him to
be spherical, at the midpoint of the cell which
would have formed one of Haiiy’s ‘‘molécules
soustractives’’; he thus arrived at a ‘‘parallele-
pipedal arrangement of the indivisible parts of
matter,’’ as he describes it at the end of his paper.
In our language such an arrangement implies a

2

primitive translation lattice, and it is not far from
this concept to the idea that each unit cell of the
space lattice is occupied by several atoms.

This was the earliest application of the scientific
atomic theory to a purely physical problem. The
kinetic theory of gases, which is usually regarded
as the beginning of atomic theory in physics, did
not appear until thirty-two years later. Seeber was
therefore far ahead of his time, and it was no
wonder that his contemporary physicists failed to
respond to his ideas, which were forgotten until
Sohncke revived them in 1879. But at least one
mathematical problem had been raised—the num-
ber of geometrically possible space lattices that cor-
respond to the 32 crystal classes and to their sym-
metry operations. Moritz budwig Frankenheim
and Auguste Bravais took up this problem, and
in 1850 Bravais described the 14 pure translation
lattices which have been nawmed after him. Inci-
dentally, his papers alsg cortain the concept of the
reciprocal lattice, thic-wis later rediscovered and
used in connection with the study of interference
effects from crystals. This purely group-theoretical
investigation wasextended by Leonhard Sohncke in
1879 through the introduction of further sym-
metry operations, thus arriving at 65 different
“‘space groups.’”” The complete solution of the
problem, taking into account a/l possible sym-
metry operations on a lattice, was given simul-
taneously in the year 1890 by Evgraph Stepano-
vitsch Fedorov and by Artur Schoenflies. They
derived the 230 space groups which are used in
modern structural research.

Investigations pursued by English scientists of
the following decade were less systematic and far
more hypothetical, but their ideas possessed the
advantage that they could be visualised more
easily. Inspired by the success of stereochemistry,
they devised three-dimensional models of atomic
structures based on lattices. Lord Kelvin pub-
lished a paper on this subject in 1894. Reasoning
along these lines was most fully expressed in a
series of long papers by W. Barlow in the last
decade of the nineteenth century. Barlow took up
the idea of close packing, and distinguished for the
first time correctly between the cubic and hexa-
gonal forms of packing. He also considered the
question of packing of spheres of two or three dif-
ferent sizes and described, for example, the sodium
chloride structure, although neither in this nor in
any other case did he in these early papers name
a substance which might be expected to have one
of the proposed structures. This was undoubtedly
one of the reasons why the whole of his structure
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theory at first attracted little attention. Moreover,
the very reality of atoms was doubted again and
again right up to the end of the nineteenth century.
Even in the absence of such doubts, and even when
collaboration with Pope had given the chemical
application of Barlow’s theory, there was still no
way of bringing the hypothetical structures into
relation with experiment. In order to establish
structure theory on a firm basis, yet another set of
1deas, those of physical optics, had to be brought in.

The diffraction of visible light by gratings, which
mostly consisted of lines scratched on glass or
metal, had already been described by Grimaldi in
the seventeenth century. and again by Joseph
Fraunhofer at the beginning of the nineteenth. The
relevant theory can be found in the comprehensive
treatise by Friedrich Magnus Schwerd: Dic Beu-
gungserscheinungen, a.t den Fundamentalgesetzen
der Undulationsth-orie analytisch entwickelr (1835),
The grating was and still is the most important
instrument in spectrc®copy. Later physicists en-
gaged in work on optics have often returned
to Schwerd’s theory. In particular, Lord Rayleigh
frequently emphasised that the essential charac-
teristic of a grating is the periodic repetition of its
elements and not the nature of those elements.
Round about 1910 M. von Laue, in writing an
article on wave theory for the Encyklopddie der
mathematischen Wissenschaften, set himself the
task of elaborating, as clearly as possible, this idea
of Rayleigh’s, and arrived at an equation for the
position of the diffraction maxima which could be
extended without difficulty to the case of double
periodicity as it exists in cross-gratings; in the
latter case two such equations had to be formu-
lated.

In the meantime the science of optics had been
extended far beyond the limits of the visible spec-
trum. The farthest extension on the short-wave
side had come about in 1895 through Réntgen’s
discovery of X-rays; soon afterwards (1896) Emil
Wiechert and George Gabriel Stokes concluded
from the way in which X-rays are produced that
they must be short waves consisting of electro-
magnetic pulses. This was confirmed by the obser-
vation of their polarisation, made by C. G. Barkla
in 1906. Wilhelm Wien in 1907 estimated their
wavelength to be 7 x 10-? cm. on the basis of their
observed photoelectric effect, while A. Sommer-
feld in 1912 calculated a value of 4 x 10-? ¢m.
from their diffraction by a slit. On the other hand,
they showed such strong quantum effects that
" some very eminent physicists held firmly to the
corpuscular theory of X-rays.

Both these questions and that of the fine struc-
ture of crystals were decided by the researches of
W. Friedrich and P. Knipping. which were pub-
lished in the summer of 1912 in the Sitzungsberichte
der Bayerischen Akademic. Von Laue's diffraction
theory, which had provided the inspiration for
these experiments and which had indeed been con-
firmed by their results, simply consisted of the dif-
fraction conditions for a cross-grating, with the
addition of a third condition to take account of the
three-dimensional periodicity of a space lattice.
Admittedly von Laue had expected. in accordance
with the Stokes-Wiechert pulse theory, that many
more interference spots would appear on the
photographs than were actually observed, and he
could only explain their absence by ascribing to
the atoms of the crystal a strongly selective scatter-
ing power for X-rays: this idea. though it later
proved to be mistaken, was not altogether un-
reasonable in view of the characteristic X-ray emis-
sion of the elements which had been found by
Barkla. Towards the end of 1913, at the second
Solvay Congress, von Laue used the rediscovered
reciprocal-lattice theory to extend to the general
case of any crystal the geometrical construction for
the interference maxima from cubic crystals that
had been given by P. P. Ewald. He thus provided
the foundation for a simple *‘geometrical’’ theory
of X-ray diffraction.

Meanwhile the experiments of Friedrich and
Knipping, and von Laue’s interpretation of them,
had become known in England, and had inspired
much discussion and further investigation, par-
ticularly by W. H. and W. L. Bragg. The story of
what happened is here continued by Sir Lawrence
Bragg:

““In the summer of 1912 my father showed me
von Laue’s paper, which had aroused his intense
interest because of his work on the exciting of
cathode rays by X-rays, which pointed to the pro-
jectile-like properties of X-rays. and he discussed
with me possible alternative explanations for the
effects which von Laue had found. I undertook
some experiments at Leeds that summer to see
whether we could explain von Laue's spots by the
shooting of particles down avenues in the crystal
lattice rather than by the diffraction of waves, ex-
periments which were of course abortive.

“*On returning to Cambridge in the autumn of
1912 I studied von Laue’s photographs very inten-
sively, and was very naturally forced to the con-
clusion that they must be due to diffraction. I also
concluded at the same time that one must modify
the explanation of them which von Laue had given.
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Von Laue had remarked that one did not get all
the spots one would expect from a simple cubic
lattice, but only a selection of the whole range. He
ascribed this to the existence in the X-radiation of
five characteristic wavelengths chosen so that they
approximately satisfied the diffraction conditions
for the spots which actually appeared in the photo-
graphs. I, on the other hand, concluded that von
Laue’s spots were due to the diffraction of ‘white’
X-radiation, representing a continuous band of
wavelengths over a certain range. I was led to this
first by noting the changing shape of the Laue
spots when the distance from the photographic
plate to the crystal was altered. This in turn led
me to consider the diffraction effect as a reflection
of X-ray pulses by the lattice planes of the crystal.
I pointed out that this was equivalent to the selec-
tion from the continuous spectrum of a wavelength
determined by the lattice spacing of the crystal. 1
tested this by reflecting the X-rays from a mica
plate set at a series of angles, getting in every case
a spot in the reflected position and so showing, as
I believed, that all wavelengths were represented
over a certain range in the X-rays. The problem
then remained to explain why only certain spots
appeared in the Laue photographs, and I ascribed
this to the fact that the essential underlying lattice
of the crystal was face-centred and not simple
cubic. I communicated these results to the Cam-
bridge Philosophical Society in November 1912.
The ‘Bragg equation’ appeared in this paper
(p. 46) in the form A= 2dcos 6, but in later
papers 0 was defined as the glancing angle and not
the angle of incidence.

‘‘Professor Pope at Cambridge was very interes-
ted in these results, because the close-packed
lattices which he and Barlow had devised for
atoms which they believed to be of equal size were
face-centred cubic. He procured crystals of potas-
sium chloride and sodium chloride for me, and I
took their Laue photographs. I showed that these
could be explained by an arrangement of alternate
scattering centres in two interleaved face-centred
lattices, the NaCl structure in fact, and that these
centres must be equal in scattering power in KCl
but different in scattering power in NaCl.

““This work was done at Cambridge before I
collaborated with my father. We worked along
divergent lines at first, which came together later.
My father was very interested in my explanation
of the diffraction effect as a reflection, and he set
up at Leeds the first X-ray spectrometer. He was
primarily interested in the nature of X-rays. He
checked that the reflected rays were really X-rays,

a point on which he wished to satisfy himself be-
cause of his speculations about the corpuscular
nature of X-rays. He found as I did that there
appeared to be a continuous spectrum, but his
spectrum also showed some peaks superimposed
upon this continuous range, and by improving the
apparatus he soon narrowed these down so much
that it was clear that they were monochromatic
components characteristic of the target. Incident-
ally I think it is not often realised how much work
he did on characteristic X-rays before Moseley
made his brilliant generalisations. My father con-
structed tubes with about a dozen different anti-
cathodes and identified Barkla’s K and L radia-
tion, showing that the K contained two peaks and
the L three peaks. He related the wavelengths to
the atomic weights of the metals in each anti-
cathode (the idea of atomic number had not yet
come to the fore) by a simple law. In fact he gave
the first hint of Moselev’s felations, and it was his
work which inspired Meseley to his broader
generalisations.

‘‘My father then examined with his spectro-
meter crystals of KCl and NaCl such as I had used
for my Laue photographs, and found the reflec-
tions of the characteristic peaks from the (100),
(111) and (110) faces. It was clear at once that
the spectrometer was a far more powerful way of
investigating crystal structure than the Laue photo-
graphs, which I had used. It was only at this stage
that we joined forces. In particular, I had been
trying to analyse the diamond structure by Laue
methods without success, but my father mounted
it on the spectrometer and the structure became
immediately obvious. We wrote a paper on the
diamond structure together, but the results which
gave the clue to it were obtained by him. I was
able, however, to work along with him with the
spectrometer in the summer of 1913, and so to
work out the structures of zincblende, fluorspar,
pyrites and some of the carbonates, which showed
how powerful the spectrometer could be. My
father was at first principally interested in X-ray
spectra and X-ray absorption edges, but crystal
structures also fascinated him, and from that point
on we both mainly devoted ourselves to crystal
structure analysis.’’

These experiments, together with those of Fried-
rich and Knipping, not only confirmed von Laue’s
diffraction theory but gave a direct proof of the
existence of the space-lattice, and provided a
simple expression (the Bragglaw) for the relation-
ship between the wavelength of the X-rays used
and thelattice spacings of the crystal. Theionisation
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curves obtained by mcans of the Bragg spec-
trometer showed clearly that the ‘‘mirror-image
reflection’” postulated by Bragg is selective and is
conditioned by multiple interference. The Bragg
equation was first published in its usual form in a
paper by W. H. and W. L. Bragg in the Proceedings
of the Royal Society, vol. 88, page 428 (1913).
Soon afterwards von Laue [Physikalische Zeit-
schrift, 14, 421 (1913)] was able to show that
this equation was only another way of expressing
the results of the geometrical space-lattice theory.

Ionisation spectrometer measurements also re-
vealed another reason for the absence of many of
the interference spots at first expected by von
Laue. The pulse theory of X-rays predicted much
too wide an extension of their spectrum in the
short-wave direction. In fact, as W. Duane and
F. L. Hunt establishes in 1915, this spectrum ends
abruptly at the short-wavelength limit given by the
now well-known quaniim rule.

Still further credit 1s*Zue, however, to W. H.
and W. L. Bragg. X-ray diffraction patterns had
made it possible to compare the wavelengths of
X-rays with the three lattice constants, whose ax-
ial ratios were already known. Absolute measure-
ments, however, remained impossible without a
knowledge of the absolute value of the lattice con-
stant of at least one substance. It was necessary
for this purpose to know the number of atoms in
the unit cell, and this was impossible without a
knowledge of the structure. The Braggs’ measure-
ments, however, had shown that sodium chloride
really did possess one of the hypothetical struc-
tures postulated by Barlow. Thus it was possible
to obtain the absolute value of the lattice constant
of this salt; this in turn provided an absolute
measure of the wavelengths of X-rays, and hence
the absolute lattice constants of all other crystals
investigated. Rarely has the value of hypothesis
in research been so strikingly demonstrated.

This brings us to the end of the historical intro-
duction as far as X-rays are concerned, since all

that has followed is merged into present-day prac-
tice. Yet the space lattice has had another most
important part to play in physics.

In 1924 L. de Broglie put forward in his Theéses
the basic idea of wave mechanics. In the summer
of 1925 Walter Elsasser, in a letter to the editor of
Naturwissenschaften, pointed out that the de
Broglie waves of electrons must cause space-lattice
interference effects, and that experiments by
Davisson and Kunzman on the reflection of elec-
trons from a platinum sheet had actually shown
maxima of the expected kind. When in 1926
E. Schrodinger published his communications
on Quantisierung als FEigenwertproblem, C. J.
Davisson and L. H. Germer began systematically
to look for these effects. In March 1927 they were
able to publish a note in Nature to say that their
efforts, made on a single crystal of nickel, had
been crowned with success. In May of the same
year G. P. Thomson and A. Reid announced that
an electron beam of several thousand volts had, on
passing through a celluloid film. produced Debye-
Scherrer rings, and G. P. Thomson found the same
effect even more clearly with metal foils. Thus
Elsasser’sprediction was confirmed and the plainest
of all proofs had been given of the connection of
a wave with the movement of a corpuscle.

Admittedly the geometrical theory of space-
lattice interference does not apply so well to elec-
trons as it does to X-rays, especially not to low-
energy electrons. But it has enjoyed further
triumphs in the diffraction of neutrons, observed
first by D. P. Mitchell and P. M. Powers, then
since 1946 by W. H. Zinn, E. Fermi. C. Shull and
other American physicists using the cyclotron or
the uranium pile as a source. Here a new possi-
bility has to be taken into account: the atomic
structure factor, which is characteristic for the
scattering of single atoms, may be negative as well
as positive. This branch of research is, however,
still in its infancy. It appears to be capable of
great development.




2. CRYSTAL LATTICES
2.1. The One- and Two-dimensional Lattices

There is only one one-dimensional lattice. This consists of a single row of equally spaced points, the
lattice being completely specified by one vector. The lattice symbol is

The general two-dimensional lattice is an infinite array of points which obey the lattice condition
that every point should have the same environment in the same orientation. The unit cell of this lattice
is a general parallelogram which can be outlined in several different ways. It is conventional in drawing
the unit cell to take the origin at the top left corner; the positive direction of the y-axis points
horizontally to the right, and the positive direction of the x-axis points down the page, either straight
down or to the left.

Specialisation of the two vectors needed to specify the lattice gives rise to four other lattices, described
in Table 2.1.1. Small italic letters are used in the nomenclature for the two-dimensional lattices in
order to distinguish their symbols from those of the three-dimensional lattices, for which capital italic
letters are used. The symbol p is used when the conventionally chosen unit cell is Tprimitive,’’ i.e.
has points at the corners only. The symbol ¢ is used when the conventional choice of unit cell produces
a centring point. There is only one centred two-dimensional lattice, and it would be easy to select a
primitive unit cell in this also, but only if the conventional rule for the choice of unit cell were dis-
regarded. This conventionally chosen unit cell is related to the symmetry elements of the lattice, and
this relation is discussed in section 2.3; but here the rules are given in terms _t-the vectors chosen as
axes.

TABLE 2.1.1
The 5 Two-dimensional Lattices
Shape of unit cell Lattice Conventional rule for Nature of axes | " :Iasmg %f
p n symbol choice of axes and anglest) corresponding
< system
General parallelogram D None a#hb i Oblique
(rhomboid) vy #90°
Rectangle 4 Two shortest, mutually | a#b - Rectangular
¢ perpendicular vectors y=90° ‘
Square P Two shortest, mutually a=h Square
perpendicular vectors v =90~
60° angle rhombus P Two shortest vectors at a=b Hexagonal
120° to each other y=120°

(1) The symbol 4 implies non-equality by reason of symmetry; accidental equality may, of course, occur.

It is not necessary to add to the lattice symbol p a mark to distinguish one primitive lattice from
the other three primitive ones, because this is done by the rest of the space-group symbol which
follows the lattice symbol (see section 4.1).

It should be noted that the four different shapes of unit cell given in the above table can be referred
to four *‘systems’’ of co-ordinate axes analogous to the systems in three dimensions.

2.2. The 14 Three-dimensional Bravais Lattices

A one-dimensional lattice may be called a “‘row.’” An evenly spaced array of rows forms a two-
dimensional lattice, that is, a ‘‘net.”” An evenly spaced array of nets forms a three-dimensional lattice,
which is an infinite array of points such that each point has the same environment in the same orienta-
tion. A “‘unit cell’” may be defined in an infinite number of ways, and it will be characterised by three
vectors, not in one plane, which are the edges of a parallelepiped.

6




2.2. THE 14 THREE-DIMENSIONAL BRAVAIS LATTICES

The Bravais lattices may be taken as arrangements of points in real space, the repeat distance between
the points in any direction being proportional, in any particular case, to the corresponding repeat
distance in the real crystal under study. Consequently the magnitude of the vectors of the Bravais
lattice may be expressed in A units and the lattices drawn to an appropriate scale. The general symbols
for the unit-cell vectors are a, b, ¢ and for their magnitudes a, b, ¢; while the co-ordinate axes, or direc-
tions of the sides of the unit cell, are referred to in general as the x-, y- and z-axes. The interaxial angles
yAz, zx, xA\y are denoted by a, B, y.

When one or more of the vectors is specialised in a non-trivial way the lattice possesses symmetry
(other than identity symmetry). In such cases it is much more convenient to select the unit-cell vectors
in such a way that they are closely related to the symmetry elements of the lattice, even though the
unit cell may not then be primitive (i.e. with one lattice point only). This sometimes results in the
conventional choice of a unit cell centred in various ways.

TABLE 2.2.1 The 14 Bravais Lattices and Conventional Unit Cells

. Number of | ~ Nature of unit- Lengthyand o
System lattices in ! Lattice symbols cell axes and angles to be of};att'ieé’
system | ‘ anglest!” specited !
Triclinic I P ‘ azb#c a. b, 1
| a:/{ﬁ:iy a. B3, b
Monoclinic? 2 3 e (P ‘ a#b+c a. b.oe - 2im
Ist setting B a—B—90° N
. P a+tb+#c a, b
; 2nd setting T a—y—90° B 2
Orthorhombic 4 ' P a#btc w. b, mpmn
c® a—B—=y=90°
{
| F
Tetragonal 2 F® ; a=bhb+c a.c 4 mmm
I ‘ a=f=y=90"
Cubic 3 P a=b—=c a m3m
: l a=B=y=90"
| F
Trigonal 1 i R® ' a=b=c a 3m
‘ a—f— y
‘ | <1207, #90°
| o
J ‘ a=bh:~c a. ¢ 6 mmm
[— F ‘ a=p=90°
Hexagonal \ y=120°

(") The symbol == implies non-equality by reason of symmetry; accidental equality may, of course, occur.

(%) For explanation of the symmetry symbols sec section 3.1.

(?) The side-centred monoclinic lattice is conventionally taken as B in the st setting (z-axis unique) and as € in the 2nd setting
(y-axis unique). It would be an equally correct description to take A in either case, but this would not distinguish which setting
had been chosen, (Sce Preface to Volume [ for the reason for listing alternative settings in the monoclinic system.)

(*) When referring to lattices alone, it is conventional to call the side-centred orthorhombic lattice . In the space groups of the
point group msn2, the ‘*z-axis unique’” convention requires that the side-centred lattice shall sometimes be called C, and
sometimes 4 (or B).

(°) The tetragonal lattices P and I may also be described as C and F, but only if the a,b vectors chosen are rnot the shortest ones
perpendicular to c.

(%) The R-lattice is here described on rhombohedral axes, but it may also be referred to hexagonal axes. Where it is necessary to
distinguish these the symbols Robv or Rrev (see p. 20) are used for the description on rhombohedral axes and Rhex for that on
hexagonal axes.

(?) In the 1935 Tables the symbol C was used to denote the hexagonal lattice. Thereasons for this. although valid, do not outweigh
the confusion caused. The lattice is, in fact, primitive and is therefore called P. It is common to both the trigonal and
hexagonal systems (see pp. 10, 11).
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2.2. THE 14 THREE-DIMENSIONAL BRAVAIS LATTICES

The different types of lattice are as follows:

A, Bor C  Centred on one pair of opposite faces of the unit cell [4 (100), B (010), C (001)] as well

as having points at the corners.

All faces centred, in addition to points at the corners.

Body centred, in addition to points at the corners.

Primitive (points only at the corners); except rhombohedral.

Primitive rhombohedral.
The relationships between the magnitudes of the axes and the interaxial angles in the conventional
unit cell are given in Table 2.2.1. But it must be emphasised that in every lattice it is possible to choose
a primitive unit cell, although this is not always convenient. Such a primitive unit cell (the vectors of
which are known as a ‘*primitive triplet”’”) may be found from the analysis of diffraction data and may
have to be ‘reduced” to the corresponding conventional unit cell (see section 5.1). 1t should be noted
that in choosing the primitive unit cell various alternatives are possible, although sometimes one of
these might be obviously more convenient than another. The relationships of axes and angles in some
of these non-conventional unit cells corresponding to conventional but non-primitive unit cells are
shown in Table 2.2.2. These are listed as (1), (2), (3), etc. It will be noticed that although symmetry is
ignored in choosing these primitive cells, it is always, if present, revealed by axis or angle relationships.

The 14 Bravais lattices can be referred to seven different co-ordinate systems on the basis of the

specialisation of their vectors. These systems are discussed in section 2.3. In each of the svstems, with
the exception of the trigonal, the shape of the unit cell (see column 4, Table 2.2.1) of the lattice is
characteristic of the system. In the trigonal system two kinds of primitive unit cell are possible; and
it is found in practice that some trigonal crystals have a structure based on the hexagonal lattice while
others have a structure based on the rhombohedral lattice.

X~

TABLE 2.2.2

Relationships between Axes and Angles in some Primitive Unit Cells and in the Conventional
Non-primitive Unit Cells to which they Correspond
Notke. See section 5.1 for systematic reduction of the general primitive unit cell to the corresponding conventional Bravais

lattice unit cell, and for the complete list of 24 possible ‘‘reduced cells®’ defined there,
The symbol £ implies non-equality by reason of symmetry; accidental equality may, of course, occur.

Conventional unit cell Primitive unit cell
(symmetry considered) (symmetry ignored)
Triclinic Triclinic
azbc; asBty a7b#e; atfty
(including all non-primitive e, B,y not satisfying any of the restrictive conditions given
unit cells) below, except in an accidental way.
Monoclinic ] Monoclinic
Ist setting (z-axis unique) (1) a#b#c o b
Lattice 4 or B a=90°#B £y fi=cosi oo v cos 2a
£b+#c; a=B=90°#
a p=90" 7y (2) a#bre L btrer-a?
. . . #B¢ ¢900 (l# COS 5
2nd setting (y-axis unique) ( o Y 2bc
Lattice 4 or C B— cos1 ctt+a?-b*
a#b+#c; a=y=90°+#£p 2ca
i ) ey @D
Ist or 2nd setting y= COs Toub
Lattice / or F )
(3) a=b#c N ,,1[ a
> -— 7 —{(1+
0= By £90 a= COS > cos 2(( cos y)]
etc.




2.2. THE 14 THREE-DIMENSIONAL BRAVAIS LATTICES

TABLE 2.2.2 (continued)

Relationships between Axes and Angles in some Primitive Unit Cells and in the Conventional
Non-primitive Unit Cells to which they Correspond

NoTe. See section 5.1 for systematic reduction of the general primitive unit cell to the corresponding conventional Bravais
lattice unit cell, and for the complete list of 24 possible *‘reduced cells’’ defined there.

The symbol £ implies non-equality by reason of symmetry; accidental equality may, of course. occur.

Conventional unit cell Primitive unit cell
(symmetry considered) (symmetry ignored)
Orthorhombic Orthorhombic
Lattice 4 or Bor C (1) a#b#c; a=B=90"; v= cos 1%
a+#b+c (2) a=b#c; a=B=90°£y #120°
a=fey=-90° ete.
Lattice 7 (1) as#£b#c; 4a?#2b*+c?
a+b+c a=90°: B= cos ! zi; y== COS 1;}7«
azjg:r:yigoo a Za .
(2) a=b+#c; a=B#Ay#90% a- cos ' -
e
(3) a=b=c; a#B#y, 14 COSa - COS 3 CO5 vy
etc.
. N SRV
Lattice F (]) a#b?&(, a= Ccos ! __2b_—
C
a£b+£c 8- cos . ci-a® b
a=B=y=90° 2ca
A
Y 2ab
.
(2) a=b+#c; a=B+#y;, a= cos ! B—](l -~ o8 }/)J
B
etc.
Tetragonal Tetragonal
Lattice J or F (1) a#b=#c; 4a*=2b%+c?
a=b+#c a=90°; B= cos? 2i; y= cos 1 ;b-»
a e
a=B—y=90° .
(2) a=b+#c; a=B=cos™?! 575 =90
2c
(3) a=b=c; a=B#y
etc.
Cubic Cubic
a=b=c¢;, a=B=-y-90°
Lattice /7 (1) a=b=c; a=B=y= cos ! (--§)=109" 28 etc.
Lattice F (1) a=b=c; a=B=y= cos ! 1=60"; etc.




2.3, CRYSTAL AXES AND SYSTEMS
Note on Nomenclature

If any point of the lattice is taken as origin, the vectors corresponding to any other lattice point
may be expressed as ua, vb, we, where u, v, and w are integers. The co-ordinates of the lattice point are
then said to be u, v, w (no brackets).

The direction joining the origin to the points u, v, w; 2u, 2v, 2w; . . . defines a row of points [u v w]
(square brackets); the same symbol stands for any line parallel to the given direction, since the lattice
is infinite and the origin may be taken at any point. [u v w] is the symbol for a single zone axis; a
form of zone axes (directions related by symmetry) is denoted by the use of angular brackets (u v w).

Any position whatever in space may be given co-ordinates in terms of a lattice point taken as origin
and the edges of the unit cell as axes. If the vectors corresponding to the required position are (z+x)a,
(v+y)b, (w+z)c, where u, v, w are integers and X, y, z are all less than unity, then the co-ordinates of
the position are said to be x, y, z (no brackets).

The lattice may be intersected by sets of equally spaced parallel planes, in an infinite number of
ways. If the plane in any set nearest to, but not passing through, the origin, intersects the unit-cell
vectors at a/h, b/k, ¢/l, then the set of planes is said to have the indices (h k /) (in parentheses). The
same symbol stands for the indices of a single crystal face parallel to the set of planes. A form of faces
(or sets of planes, related by symmetry) is denoted by the use of braces {hkl}

In the hexagonal lattice the equilateral nature of the nets perpendicular to the unique axis is often
emphasised by the use of indices (4 k i I), where the three indices &, k and / refer to the directions x-,
y- and u-, all at 120° to each other. In this case the relationship holds that i = —(/1 +£).

2.3. Crystal Axes and Systems

The morphological study of crystals of different symmetry showed that they could be referred to
seven different sets of crystallographic axes of reference, each set possessing characteristic symmetry.
A more fundamental division, however, was that into 32 crystal classes, on the basis of point-group
symmetry (see section 3). The grouping of the 32 point groups into the seven systems is shown in
Table 2.3.1.

The 14 Bravais lattices may also be referred to the same seven systems (see Table 2.2.1) because the
sets of axes of reference are simply the edges of the unit cells of the Bravais lattices.

The seven systems were originally taken as follows: Triclinic, Monoclinic, Orthorhombic, Tetragonal,
Rhombohedral, Hexagonal and Cubic (or Isometric).

It had long been known, of course, that crystals belonging to the ‘‘Rhombohedral™" system could
be described equally well on hexagonal (Miller-Bravais) axes as on rhombohedral (Miller) axes. The
later development of space-group theory, and then of X-ray diffraction methods of crystal structure
investigation, showed that there was a complication in the case of crystals with 3-fold symmetry but
lacking a symmetry plane normal to the 3-fold axis. The 230 space groups (see section 4) are obtained
by adding the point-group symmetry, with possible translations, to appropriate lattices. Five point
groups possess 3-fold symmetry but no perpendicular symmetry plane. A given crystal belonging to
any one of the five crystal classes so defined might, it was discovered, have a space group based either
on a primitive hexagonal lattice or on a primitive rhombohedral lattice. This is the basis of the use of
alternative hexagonal or rhombohedral axes of reference for crystals belonging to these five classes
(as in Tables 2.2.1 and 2.3.1). Consequently it is not possible to make an altogether satisfactory
grouping of crystal classes into systems. The five classes mentioned above can be grouped as the
Trigonal system; alternatively they can be grouped as a subdivision of the Hexagonal system. It is not
satisfactory to call them Rhombohedral.
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TABLE 2.3.1
Crystallographic Axial and Angular Relationships, and Characteristic Symmetry of the Crystal Systems

) Axial ratios
. Axial and angular | and angles to be . .
Point groupst® System relationships specified for each Characteristic symmetry
substance

1,1 Triclinic a+bs£c a:b:c I-fold (identity orinversion)
a#BEy£90° a, B,y symmetry only.

2, m, 2/m Monoclinic® Ist setting 2-fold axis {rotation or in-
a#b#c a:b:c version) in one direction
a=B=90°£y v only, this being taken as the

z-axis in the first setting and
2nd setting as the y-axis in the second
a#b=-c a:b:c setting.
a=y=90"£8 B

222, mm?2, Orthorhombic atb#c a:b:c 2-fold axes (rotation or

mmm a=F=y=90" inversion) in three mutually

perpendicular directions.

4,3, 4/m, Tetragonal a=b#c cia 4-fold axis (rotation or in-

422, 4mm, a=fB=y=90° version) along the z-axis.

2m, 4/mmm

23, m3, Cubic a=b=c None Four 3-fold axes each

432, 43m, a=F=y=90° inclined at 34 44’ to the

m3m crystallographic axes.

3,3 Trigonal (Rhombohedral axes) a 3-fold axis (rotation or

32, 3m, 3m (may be takenas | a=b=c inversion) along [111] using

subdivision of a=f=y<120°£90° rhombohedral axes. or
hexagonal) —_—
(Hexagonal axes)® along the --direction using
a=b+#c c:a hexagonal axes.
a=F=90°, y=120"

6, 6, 6/m, Hexagonal a=b#c ® c:a o-fold axis (rotation or

622, 6mm, a=8=90" mversion) along the z-axis.

6m2, 6/mmm v==120°

(1) For explanation of point-group symbols see section 3.1.
(*) The sign 3£ implies non-equality by reason of symmetry; accidental equality may, of course, occur.
(®) See Preface to Volume I for explanation of alternative settings.
(%) In drawing the hexagonal axes, it is customary to take three axes, x-, y- and u-, at 120° to each other. and normal to the z-axis.

2.4. The Reciprocal Lattice

To each direct (or real-space) lattice there is a corresponding lattice in ' reciprocal™™ space, which
has the same symmetry and can therefore be referred to the same type of co-ordinate axes of reference
(system). Rows of points (zone axes) in the direct lattice are normal to nets (planes) of points in the
reciprocal lattice, and vice versa. The repeat distance between successive points along a row in reci-
procal space is inversely proportional to the interplanar spacing between nets of points in real space
normal to the row of points in question, and vice versa. It should be noticed that the interplanar
spacing is the perpendicular distance between successive planes (nets) of lattice points. and is not, in
general, an actual distance between points, but that it reciprocates into a distance between points.
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2.4. THE RECIPROCAL LATTICE

The lattice reciprocal to a given primitive direct lattice may be obtained by taking any point as
origin and from it drawing normals to all sets of direct-lattice planes (hkl), (A, k, and [ integral, but
not necessarily prime to each other). Points are then placed along these normals at distances K/d,,
from the origin, where K is a constant and dj, is the interplanar spacing of the planes (hk/). The array
of points thus obtained forms a lattice as defined in section 2.2. Each reciprocal lattice point is denoted
by the symbol hkl (without brackets) of the set of direct-lattice planes to which it is thus related, and
h, k, I (always integral) are the co-ordinates of the lattice point in reciprocal space (Fig. 2.4.1, p. 14).

In applying reciprocal lattice methods in X-ray diffraction problems it is common to take the con-
stant K=A (the wavelength used); in this case the distance of the reciprocal lattice point Ak/ from the
origin, A/dy,, is given in dimensionless units. Alternatively, K may be taken as unity. In all repre-
sentations of the reciprocal lattice it is therefore necessary to give the value of K and also the scale on
which the lattice is drawn. Scales such as 5 or 10 ¢cm. to 1 unit (dimensionless, or A-') are convenient
in practice.

Table 2.4.1 gives the relationships between the unit-cell axes and angles in real space and in reciprocal
space, for primitive unit cells only. The unit cell in the reciprocal lattice which corresponds to a
primitive unit cell chosen in the direct lattice may be constructed as follows. Any lattice point is
taken as origin and from this point normals are drawn to the axial planes (100), (010), (001) of the
primitive direct-lattice unit cell. Along each of these normals a point is placed at distances from
the origin respectively a*=K/d, y, b*=K/dy; 4 ¢*=K/dyy,. The three vectors, a*, b* and ¢*, defined in
this way are the edges or axes of the reciprocal-lattice unit cell (also primitive) which corresponds to
the primitive direct-lattice unit cell originally chosen. The repetition of this unit cell produces the
lattice which is reciprocal to the original direct lattice. The reversal of this procedure will give the
direct lattice corresponding to the reciprocal lattice. Since a primitive unit cell can be outlined
(in an infinite number of ways) in any direct lattice, the above procedure can always be used to find
the direct lattice from the reciprocal lattice and vice versa. Use may be made here of Table 2.2.2.

If, however, the direct lattice is such that the conventional choice of unit cell is non-primitive,
then the above procedure must not be applied without modification to the conventional unit cell in
order to obtain the reciprocal lattice. The necessary modification required is shown in Table 2.4.2, It
will be seen in this table that if the conventional unit cell in the direct lattice is non-primitive,
then that in the reciprocal lattice will also be non-primitive, although not necessarily of the same kind.

Fig. 2.4.2 (p. 14) shows, two-dimensionally, the relationship between direct and reciprocal-lattice
cells when both are primitive, and Fig. 2.4.3 shows the relationship (again two-dimensionally) in the
case where the net is centred, the actual values of the direct unit-cell vectors a and b being the same
in the two figures. The conventional unit cell in the reciprocal lattice is now centred also, and the
lengths of its sides are 2a*, 2b*, its area being four times that of the primitive cell shown in Fig. 2.4.2.

TABLE 2.4.1

Relation between Axes and Angles of Direct-lattice and Reciprocal-lattice Primitive Unit Cells for
the Various Systems

Symbols
a, b, c Lengths of edges of direct-lattice unit cell.
a, B,y Inter-axial angles of direct-lattice unit cell.
a*, b*, c* Lengths of edges of reciprocal-lattice unit cell.
a*, B*, ¢* Inter-axial angles of reciprocal-lattice unit cell.
K Reciprocal constant.
vV, V¥ Volume of direct-lattice unit cell; of reciprocal-lattice unit cell.
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2.4. THE RECIPROCAL LATTICE

TABLE 2.4.1 (continued)
For symbols see previous page.

Triclinic
a*:Kbc sin a_ b _Kea sin B, o :Kab sin y
Voo | S v
where V'=abc{1+2 cos a cos B cos y - cos® a— cos? - cos? y}

=2 abe{sin s. sin (s—a). sin (s—p). sin (s—y)}H; V*:%
2s=a+fLy
cos a* 508 B'cos y.— cos a; cos B*- cos 'y‘COs a',‘ cos [3; cos y*;cos a-cos /3.'7 €cos 5
sin B sin sin y sin « sin « sin B
Monoclinic
Ist setting a* - K ; b¥— K :oc* K a*=8%*=90"; +*-180
asin vy b sin
2nd setting a*:——(f—, *:K; c* K ; a®=p* 2007 B*. 180 3
asin b ¢ sin B
Orthorhombic Tetragonal Cubic
at g Ko K ar=pr=t; o K ar b
a b ¢ a ¢ u
a¥ = f¥=*-90° a¥ = f* =% -90° a®op¥o 0907
Hexagonal Rhombohedral
9
a* -=b*- ﬁ; c*= K a*:b*:c*:—K——'a SIn o where V'=a3[1-3 cos? -2 cos?® o]t
av3 ¢
. Pk __ o. * . _ o a . e
a*-:f¥=90° 4*=60 COS a* — cos f* = cos y*:cos a_Cosa COS a
sin? a (1 - cos a)
TABLE 2.4.2
Modification of Table 2.4.1 required to include Non-primitive Unit Cells
Direct lattice Reciprocal lattice
Unit cell edges Type Type Unit cell edges Volume
‘ Pand R Pand R a*, b*, ¥ L*
( A A a*, 2b*, 2c* 41+
ab c J B B 2a*, b*, 2c* 4)*
'O \ c c 2a*, 2b%, c* 4
{ I F 2a*, 2b*, 2c* Qi
F 1 2a*, 2b*, 2¢* Sh¥
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24. THE RECIPROCAL LATTICE
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Fig. 2.4.1.
Oblique direct lattice and the reciprocal lattice.
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Fig. 2.4.2. Fig. 2.4.3.
Primitive rectangular direct lattice and Centred rectangular direct lattice and the
the reciprocal laftice. reciprocal lattice.
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