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Preface

This expanded reprint volume is the first book devoted to
the new field of intelligent signal processing (ISP). It grew
out of the November 1998 ISP special issue of the JEEE
Proceedings that the two of us coedited. This book contains
new ISP material and a fuller treatment of the articles that
appeared in the ISP special issue.

WHAT Is ISP?

ISP uses learning and other “smart” techniques to extract
as much information as possible from incoming signal and
noise data. It makes few if any assumptions about the
statistical structure of signals and their environment. ISP
seeks to let the data set tell its own story rather than
to impose a story on the data in the form of a simple
mathematical model.

Classical signal processing has largely worked with math-
ematical models that are linear, local, stationary, and
Gaussian. These assumptions stem from the precomputer
age. They have always favored closed-form tractability
over real-world accuracy, and they are no less extreme
because they are so familiar.

But real systems are nonlinear except for a vanishingly
small set of linear systems. Almost all bell-curve probabil-
ity densities have infinite variance and infinite higher order
moments. The set of bell-curve densities itself is a vanishin-
gly small set in the space of all probability densities. Real-
world systems are often highly nonlinear and can depend
on many partially correlated variables. The systems can
have an erratic or impulsive statistical structure that varies
in time in equally erratic ways. Small changes in the signal
or noise structure can lead to qualitative global changes
in how the system filters noise or maintains stability.

ISP has emerged recently in signal processing in much
the same way that intelligent control has emerged from
standard linear control theory. Researchers have guessed
less at equations to model a complex system’s throughput
and have instead let so-called “intelligent” or ‘“model-
free” techniques guess more for them.

Adaptive neural networks have been the most popular
black box tools in ISP. Multilayer perceptrons and radial-
basis function networks extend adaptive linear combiners
to the nonlinear domain but require vastly more computa-
tion. Other ISP techniques include fuzzy rule-based sys-
tems, genetic algorithms, and the symbolic expert systems
of artificial intelligence. Both neural and fuzzy systems can
learn with supervised and unsupervised techniques. Both
are (like polynomials) universal function approximators:
They can uniformly approximate any continuous function
on a compact domain, but this may not be practical in many
real-world cases. The property of universal approximation
justifies the term “model free”” to describe neural and fuzzy
systems even though equations describe their own
throughput structure. They are one-size-fits-all approxima-
tors that can model any process if they have access to
enough training data.

But ISP tools face new problems when we apply them
to more real-world problems that are nonlinear, nonlocal,
nonstationary, non-Gaussian, and of high dimension. Prac-
tical neural systems may require prohibitive computation
to tune the values of their synaptic weights for large sets
of high-dimensional data. New signal data may require
total retraining or may force the neural network’s vast and
unfathomable set of synapses to forget some of the signal
structure it has learned. Blind fuzzy approximators need
a number of if-then rules that grows exponentially with
the dimension of the training data. This volume explores
how the ISP tools can address these problems.
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Preface

ORGANIZATION OF THE VOLUME

The 15 chapters in this book give a representative sample
of current research in ISP and each has helped extend the
ISP frontier. Each chapter passed through a full peer-
review filter:

1.

Steve Mann describes a novel technique that lets one
include human intelligence in the operation of a wear-
able computer.

Sanya Mitaim and Bart Kosko present the noise pro-
cessing technique of stochastic resonance in a signal
processing framework and then show how neural or
fuzzy or other model-free systems can adaptively add
many types of noise to nonlinear dynamical systems
to improve their signal-to-noise ratios.

Malik Magdon-Ismail, Alexander Nicholson, and
Yaser S. Abu-Mostafa explore how additive noise af-
fects information processing in problems of financial
engineering.

Partha Niyogi, Fredrico Girosi, and Tomaso Poggio
show how prior knowledge and virtual sampling can
expand the size of a data set that trains a generalized
supervised learning system.

Kenneth Rose reviews how the search technique of
deterministic annealing can optimize the design of un-
supervised and supervised learning systems.

Jose C. Principe, Ludong Wang, and Mark A. Motter
use the neural self-organizing map as a tool for the
local modeling of a nonlinear dynamical system.

Lee A. Feldkamp and Gintaras V. Puskorius describe
how time-lagged recurrent neural networks can per-
form difficult tasks of nonlinear signal processing.
Davide Mattera, Francesco Palmieri, and Simon Hay-
kin describe a semiparametric form of support vector
machine for nonlinear model estimation that uses prior
knowledge that comes from a rough parametric model
of the system under study.

9.

10,

11.

12.

13.

14.

15.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Pat-
rick Haffner review ways that gradient-descent learn-
ing can train a multilayer perceptron for handwritten
character recognition.

Shigeru Katagiri, Biing-Hwang Juang, and Chin-Hui
Lee show how to use the new technique of generalized
probabilistic gradients to solve problems in pattern rec-
ognition.

Lee A. Feldkamp, Timothy M. Feldkamp, and Danil
V. Prokhorov present an adaptive classification scheme
that combines both supervised and unsupervised
learning.

J. Scott Goldstein, J.R. Guescin and 1.S. Reed describe
an algebraic procedure based on reduced rank model-
ing as a basis for intelligent signal processing

Simon Haykin and David J. Thomson discuss an adap-
tive procedure for the difficult task of detecting a non-
stationary target signal in a nonstationary background
with unknown statistics.

Robert D. Dony and Simon Haykin describe an image
segmentation system based on a mixture of principal
components.

Aapo Hyvirinen, Patrik Hoyar and Erkki Oja discuss
how sparse coding can denoise images.

These chapters show how adaptive systems can solve a
wide range of difficult tasks in signal processing that arise
in highly diverse fields. They are a humble but important
first step on the road to truly intelligent signal processing.
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