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INTRODUCTION

Some low-pressure gases selectively absorb electromagnetic radiation
of particular wavelengths in the millimeter and centimeter range. This
type of absorption can be observed in an experiment broadly represented
by Fig. 1.

The source of microwaves (electromagnetic radiation of wavelength
between 1 and 1000 mm) is usually an electronic tube, which emits
radiation through a hollow metal pipe called a waveguide. The micro-
waves are detected after passage through a region of low-pressure gas
(10 mm to 10—* mm Hg pressure) by a silicon “crystal”’ or other detecting
device. This detector produces an electrical signal proportional to the

Waveguide absorptien cell

Source of
microwaves . . Microwave
of variable I detector
frequency Gas inlet

Fi6. 1. Experiment for measuring microwave absorption.

microwave power which, after possible amplification, is observed on a
meter or oscilloscope. As the frequency of the microwaves is varied,
absorption appears as a sudden decrease in the voltage output of the
detector.

Electronic techniques are characteristic of microwave spectroscopy,
being involved in the production, detection, and amplification of micro-
waves, In some cases very sensitive electronic circuits are needed for
proper detection and amplification, since the fractional power decrease
may be quite small—as small as one part in 10% in an absorption path
of 1 meter. In afew cases the absorption may be as mitch as 90 per cent,
in 1 meter path, and very easily detectable.

At gas pressures near 1 atm, a small microwave abgorption may oceur
over a wide range of frequency. As the pressure is lowered, the range
of frequency absorbed decreases proporiionally down to pressures near
10~* mm Hg, where the range is so small that the term absorption “‘line”’
is well merited. Very significantly, and contrary to experience in most

1



2 NICROWAVE SPECTROSCOPY

other types of spectroscopy, the intensity of absorption in the center of
the line does not appreciably decrease with this enormous decrease in
pressure.

Because of the narrowness of ebsorption lines at low pressures, and the
flexibility and sensitivity of electronic techniques, this type of experi-
ment and its many refinements and ramifications form a basis for the
precise, widely applicable microwave spectroscopy of gases which is the
subject of this volume.

Consider now the frequencies absorbed. These must be interpretable
in terms of the structure and behavior of the absorbing molecules. The
motions (or transitions) of electrons in atoms and molecules are known
to produce characteristically spectra in the optical and ultraviolet region.
The slower vibrational motions of atoms in molecules are primarily
responsible for the rich infrared spectra. It is the still slower end-over-
end rotation of molecules which have characteristic frequencies so low
that they lie in the microwave range and dominate microwave spectra.

Discussion of the interpretation of microwave spectra will begin with
the rather simple diatomic molecules and progress in following chapters
to successively more complex cases of linear polyatomic molecules, sym-
metric-top molecules, and asymmetric-top molecules.

Superimposed on the frequencies associated with molecular rotation
are many interesting fine and hyperfine effects, some of which have been
observed clearly for the first time by microwave techniques. These will
be discussed after the broader outlines of rotational spectra have been
treated.



CHAPTER 1

ROTATIONAL SPECTRA OF DIATOMIC MOLECULES

1-1. The Rigid Rotor. If the distance between nuclei in a diatomic
molecule is considered fixed, the possible frequencies of the end-over-end
rotation of this “rigid rotor”” can be rather simply obtained. Using
assumptions of the “old” quantum mechanics, the angular momentum
must be some integral multiple of A/2xr, so that

Jh
27!'1'] = Q;
where h is Planck’s constant, 7 is the molecular moment of inertia about
axes perpendicular to the internuclear axis, » is the frequency of rotation,
and J is a positive integer giving the angular momentum in units of
h/2x. Hence the frequencies expected from such a system are

Jh

= 4l (=D

14
The moment of inertia I comes largely from the nuclei, where most of the
molecular mass is concentrated, and for diatomic molecules of ordinary
masses is of such size that for small integral values of J, the frequency »
is of the order 10,000 to 100,000 Mc, or the wavelength in the region
3 cm to 3 mm.

On this simple basis one might expect a rotation about the molecular
axis to occur also and to have characteristic frequencies a few thousand
times greater because the moment of inertia about this axis is produced
by electrons, which are very much lighter than the nuclei. These fre-
quencies lie then near the optical region, and in a very rough way the
electronic frequencies may be regarded as due to this type of rotation
about the molecular axis. Since these frequencies are very high, they
lie far beyond the microwave range and are not ordinarily excited at
room temperature. They will therefore be neglected in most of the
following treatment. A somewhat more sophisticated and rigorous
determination of the frequencies produced by a rigid diatomic molecule
can be obtained by finding the permitted energy levels from wave mechan-
ics (see [62], p. 271, or [305], p. 60). As the molecule rotates about its
center of gravity, its orientation in space may be specified by the spherical

3



4 MICROWAVE SPECTROSCOPY
polar coordinates 9 and ¢. The wave equation may then be written
h? 1 a/. & [ LY} _
ey [sma—é (Sm o ﬁ) t e a‘Jﬁ] Ty =0 (12
where  is the wave function and W the rotational energy of the molecule.
The variables § and ¢ may be separated by substituting

¥ = 0(6)d(e)
which gives
d*®
and
h? 1 d/f. do® M©

where M? is an arbitrary constant.
Solutions of these equations which are single-valued and normalized
can be obtained only when

h2
W= m I + 1)

where J is a positive integer and M is an integer such that |M| < J.
Such solutions are
By = — L gins (1-5)
2w
0. — | @+ 1D — |M)!
“ = | T R

where P! (cos 9) is an associated Legendre function. [J(J + DI(h2/ 4x?)
is the square of the total angular momentum, so that the angular momen-
tum may for convenience be designated by J. Similarly the projection of
the angular momentum on the polar axis is given by M (h/2x), or simply
by the integer 7.
The frequency observed when the molecule makes a transition between
a lower state of energy W, and an upper state of energy W, is given by
p= L A )~
From the correspondence principle, these frequencies may be expected
to approximately equal the frequencies given by expression (1-1); hence
J: should equal J, + 1, and

]* P (cos 6) (1-6)

v = 2B(J + 1) (1-8)

where J is the angular-momentum quantum number for the lower state
(1), and B = (h/8x%I) is called the rotational constant. The quantity
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B is often expressed in units of cm™! for infrared spectroscopy. In that
case B = (h/8x*Ic). For microwave spectroscopy, B will generally be
given in cycles per second, or B = h/8x2I. However, numerical values
will usually be quoted in megacycles, or 106 cycles/sec. The selection
rule that J, = J1 + 1 or AJ = +1 for dipole radiation of a diatomic
molecule will be more rigorously demonstrated in the discussion of
intensities later in this chapter.

1-2. Energy Levels of the Diatomic Molecule. From Eq. (1-8) it is
seen that the spectrum of a rigid rotor consists of absorption lines equally
spaced in frequency with an interval 2B. Although the rigid rotor is an
idealization to which actual molecules conform to a good approximation,
accurate spectroscopic measurement reveals many deviations from this
approximation. As J increases and the molecule rotates faster, it
stretches so that the moment of inertia increases. Moreover, the nuclei
vibrate back and forth along the line joining them even in the lowest
vibrational state. A much greater difficulty from the point of view of
obtaining a complete theoretical treatment is that the entire molecular
system, composed of interacting electrons as well as nuelei, iz =0 compli-
cated that an exact quantum-mechanical solution is impossible.

However, since the electrons are very much lighter than the nuclei
and move in electric fields of approximately the same intensity, the elec-
tron motion is very much faster than that of the nuclei ; ¢.c., many eycles
of the electronic motion occur during a small portion of a cycle of the
nuclear motion. It is therefore reasonable to treat first the electronic
motion, considering the nuclei as fixed. Then the internuclear distance
r appears as a parameter. In this way the electrons are found to be
capable of occupying several states, each giving the molecule a particular
value of the energy U, for each internuclear distance. Generally in
microwave spectroscopy only the lowest of these electronic states is
important.

As the internuclear distance is slowly varied, the electronic energy
varies. Because the electronic motion is so fast in comparison with the
nuclear motion, at each instant the electronic energy may be considered
to have reached its equilibrium value corresponding to that distance.
Thus we are justified in ireating the vibration and rotation of the nuclei
separately from the clectronic motion. In this treatment [J (), which
is the sum of the electron energy plus energy of electrostatic interaction
between the two nuclei, appears as the potential energy. The validity
of this approximation was discussed by Born and Oppenheimer ([8]:
see also [62], pp. 269274, and [21], Chap. I). They showed that the
entire molecular energy, including that due to electronic motion, can be
expanded in powers of (m/M)} where m is the electronic mass and M
an average nuclear mass. Separation of nuclear and electronic motions
hence corresponds to selecting the larger terms of the series expansion
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and neglecting those which are smaller by (m/M)* or more. In some
cases the neglected terms lead to observable effects, but they can only
with difficulty be taken into account.

Using the approximation that the variation in electron energy with
nuclear motion may be included in the potential U(r), the wave equation
for vibration and rotation of a diatomic molecule becomes

1

= V2¢ + Viy + {W — U(r)ly =0 (1-9)

’LI 2
in which ¢ is the wave function for the nuclear motion, M, and M, are
the nuclear masses, and

3? 92 92

v + 30 where 7 = 1 or 2 (1-10)

P aat T oy

Zi, ¥i, and z; being Cartesian coordinates of the 7th nucleus relative to
axes fixed in space.

Transforming to spherical polar coordinates r, 6, ¢ of the second
nucleus relative to the first as origin (¢f. [62], p. 264),

10 (,00 1 (. .o 1 oy
r2ar<’ ar>+r2sin000(sm080 T st 0 ag?

+ 8w — U@ =0 (-

h2
?
where p is the reduced mass, M. M,/(M, + M,). The variables may be
separated by the substitution .
= R(r)0(6)2(¢) (1-12)

©(6) and ®(¢) turn out to be the same as the wave functions found above
for the rigid rotor.

The radial wave function R(r) obtained by the separation process is
given by

1d(,dR 82y JJ + 1) _
The term J(J + 1)/r? may be regarded as a potential energy associated
with the centrifugal force due to the rotational angular momentum J.
Substituting the expression

R(r) = 18() (1-14)
we get
@S [_JI+D
r2

s 8" W - U(r)]} =0 (1-15)
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The solutions of Eq. (1-15) will obviously depend on the form of U(r).
Since it is seldom possible actually to solve the electronic wave equation,
it is customary to use an empirical expression for U(r).

From experimental studies of
molecular spectra and from calcula-
tions on simple molecules, the general
form of U(r) is known to be that of
Fig. 1-1 (see [471]). At large dis-
tances the atoms are independent,
and the force between them is negli- ¢(r)
gible. Their energy is then just the
sum of the energies of the individual
atoms. At very small distances,
when the atoms are “in contact,”
they must repel each other. Atsome =
. . . —
lntermed.late filstance there must be F1a. 1-1. Variation of molecular poten-
a putential minimum, corresponding g energy U(r) with internuclear dis-
to the equilibrium distance of the tance r.
atoms.

Solution for Morse Potential. A potential which fulfills these require-
ments is the Morse function [16}

U(r) = D(1 — e—str—ra)2 (1-16)

where D = dissociation energy of the molecule

rs = equilibrium distance between nuclei

a = & constant
The Morse function differs from the true potential at r = 0, where the
actual potential would be extremely large. However, the Morse poten-
tial is also quite large at r = 0 and this is a region where the wave function
of the vibrating rotor is expected to be small so that the discrepancy is
not serious.

Using the Morse potential function, the radial equation (1-15) becomes

2
g;g + [ J(J + 1) + 8_7"_1»_‘ (W — D — De-tetr—r 4 2De—c(r-n))] =0

(1-17;

The solution of this equation for ./ = 0 has been given by Morse [16] and
for any J by Pekeris [52]. Substituting

hz
= g—a(r—rd = —en -
y=e and , A J(J + 1) et (1-18)
in Eq. (1-17), we obtain ‘
d’S 1dS | 8x2 8% (W — D | 2D Ar?
y? + — 2,2

z + - Y dy aht v =0 (1-19;
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For A $ 0, it is necessary to expand r3/r? in terms of y:

re _ 1 12
R N Y7V A .
1 3 2 PO -
-2+ B)e-v+ aw

If the first three terms of this Taylor expansion are retained, Eq. (1-19)
becomes

@S , 1dS 8% (W —-D—co 2D —ci . > _ }
R R O S SR BT LELI !
in which
3 3
co = A<1 —-—wara-l-—wazrz)
: 4 6
61=A<a_n—55r—f> (1'22)

1 3
c2~A(—;,¢+a—2,—3

Eq. (1-21) can be further simplified by the substitutions

S(y) = e-22R(z) ¢ = 2dy
= %’%ﬂ; (D4+e¢) b= — %j;’."(w —D—c) (123
80 that it becomes
-‘g+<f"—§—1--1)%§+gp=o (1-24)
where '
0 = g;i’,;% @D —c) —ib+1) (1-25)

As in the usual quantum-mechanical treatment of the simple harmonic
oscillator or of the hydrogen atom (¢f. [62]), for the solution of Eq. (1-24)
to be finite and vanish at the ends of its range, it must be given by a
terminating series, 7.¢., a polynomial. In fact, Eq. (1-24) is identical in
form with the equation for Laguerre polynomials found in the solution
of the hydrogen atom. This requirement can be shown to restrict » to the
values 0, 1, 2, . . .. Strictly speaking, the solutions thus obtained
satisfy the boundary condition 8§ — 0 asr — — o rather than the proper
condition S — 0 as r— 0. Ter Haar [156] has examined this approxima-
tion and shown that it is usually a good one.

It is possible to solve for W using Egs. (1-25), (1-23), (1-22), and
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(1-18), which give

- _ (D — ge1)? ah(D — 3e1) 1
e StV s A

ah? 1\
Expanding Eq. (1-26) in powers of ¢,/ D and ¢,/ D, it takes the form:
i'%’-' = we(v + §) — zowe(v + §)? + J(WJ + 1)B, — DJJ + 1)*
~ &+ HIC + 1) (1-27)

where
2D h
= ""‘»\/ Ty ™= B, = 8";3T;
h? 4B}
De = o8, DT S | (1-28)

_ A%, (1 B 1>=6\/5.~B§__633
Qe lﬁw’prz—D ar. ;1.’—;‘:? we _w—:
We, @, B. in (1-27) and (1-28) are expressed in cycles per second. The
terms in Eq. (1-27) can be identified with the solutions of more specialized
problems, so that each can be given a physical significance. Thus the
first term involving (v + 3) has the form of the solution of the wave equa-
tion of a pure vibrator with a harmonic potential. The second term is
obtsined when the vibrator potential is made anharmonic by the addition
of a cubic term in the potential energy. A term of the form BJ(J + 1)
is just that obtained in Eq. (1-4), the solution of the rigid rotor problem,
while the next to last term comes from centrifugal stretching of the
rotating molecule. The last term allows for the change in average
moment of inertia due to vibration and the consequent change in rota-
tional energy.

Dunham’s Solution for Energy Levels. Some other more refined poten-
tials have been used for problems in optical spectra involving excited
rotational or vibrational states ([471], pp. 102, 108). Dunham {34] has
calculated the energy levels of a vibrating rotor, by a Wentzel-Kramers-
Brillouin method, for any potential which can be expanded as a series of
powers of (r — r,) in the neighborhood of the potential minimum. This
treatment shows that the energy levels can be written in the form

Fu =Y Yyl + PV + 1)/ (1-29)
IR}

where { and j are summation indices, v and J are, respectively, vibrational
and rotational quantum numbers, and Y are coeficients which depend
on molecular constants. The effective potential function of the vibrating
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rotor may be written in the form

U= aot?(l + aif + af? + - - ) + BJ(/ + (L — 2§ + 38 — 48
+ - ) (1-30)

where £ = (r — ro)/7e, B. = h/8m*ur?. The term involving Be/(J + 1)
allows for the influence of the rotation on the effective potential.
Dunham [34] shows that the first 15 Y;’s are

Yoo = B./8(3a: — 7a%/4)
Yio = wdl + (B/4w?)(25a; — 950,a5/2 — 67a3/4
+ 459ala2/8 — 1155a%/64)]
Yo = (B./2)[8(a: — 5a2/4) + (B2/2w?)(245as — 1365a.a5/2
. — 885a,a4/2 — 1085a3/4 + 8535a}as/8 + 1707a3/8
+ 7335a1a.a;5/4 — 23,865a%a;/16 — 62,013a2a3/32

+ 939 985ata,/128 — 209,055a!/512)] (1-31)
Yo = (B?/2w.)(10as — 3ba1a3 — 17a3/2 + 225aa./4
— 705a*/32)
Y = (5B3/w?)(Tas/2 — 63a105/4 — 33as04/4 — 63a3/8
+ 543ata,/16 + T5a3/16 + 483a,0:05/8 — 1953aia,/32
— 4989a2a3/64 + 23,205ala,/256 — 23,151a$/1024)
Ym = Be{l + (33/20)3)[15 + 14—.0/1 - 9(12 + 1503 - 2301(1,2
+ 2102 + a)/2]}
Y = (BYw)(6(1 + a1) + (B/w?)[175 + 285a, — 335a:/2
+ 190a; — 225a4/2 4+ 17545 + 2295a%/8 — 459a.a.
4+ 1425a0,a5/4 — T95a1a4/2 + 100522/8 — 715a2a3/2
4 115503/4 — 9639ala./16 + 5145a%a;/8
+ 4677a,a3/8 — 14,25%3a,/16 (182)

+ 31,185(a? + a3)/128]}

Y = (6B3/w))[5 4+ 10a; — 3a2 + 5a; — 13a1a:
+ 15(a? + ab)/2]

Yi = (20B%/ad)[7 + 21a; — 17a,/2 + 14a; — 9ay/2 + Tas
+ 225a%/8 — 45a,a; + 105a,a:/4 — 5laias/2 + 51a3/8
— 45a5a3/2 + 141a3/4 — 945ala./16 + 435aias/8
+ 411a,a3/8 — 1509a3a./16 + 3807(a! + af)/128]

Yor = —(4B/w?){1 + (B2/202)[163 + 199a; — 119a: + 90a;
— 45a, — 207a.as + 2050105/2 — 333a2as/2 + 693a2/4
+ 460 + 126(a? + at/2)]}

Yis = —(12B4/w?) (%2 + 9a; + 9a2/2 — 4da,) (1-33)

Y = —(24B8/wt)[65 + 125a, — 6la. + 30a; — 15a,
+ 495a2/4 — 117a:as + 26a} + 950,a:/2 — 207alas/2
+90(at + at/2)] J
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Yos = 16B5(3 + ay) /!

Vis = (12R%/w?) (233 + 279a; + 189a2 + 63a! — 88a;aq (134)
— 1204, -+ R0a,/3)

Yoo = ~(64B1/w})(13 + 9a; — as + 9a2/4)

It should be noted that B, is generally much smaller than w,. For most
molecules the ratio BY/w? is of the order of 10-%, although for light mole-
cules such as H, it approaches more nearly to 10—*. In such cases more
terms are required in the expressions for the various coefficients.

If Be/w, is small, the ¥’s can be related to the ordinary band spectrum
constants as follows:

Yio = w, Yo = —we, Yo = wye

Yy = B, - Y= — Qg Yo = Ye (1"35)
Yo =~ - D, Vig =~ Be Yy ~ WeZy

Yog = H,

where these symbols refer to the coefficients in the Bohr theory expansion
for the molecular energy levels:

Fop=w(v +4) — we(v + 3)2 + wpe(® + 1% + wze(v + 1)4

+BJ(J + 1) = DJ*J + 1)* + HJ¥J + )3 + - - - (1-36)
where B, = B, — a,(v + %) + 7v.(v + $)? . . . (c¢f. [471], p. 92, pPP.
107-108).

Sandeman [103] has extended Dunham’s treatment to include other
terms of the same order of magnitude which involve higher powers of the
vibrational quantum number.

For the special case of the Morse potential function, Dunham shows
that all the Yio’s except Y10 and Y vanish and all but the first terms in
the expressions for ¥, and ¥, are zero. Because of the simplicity of the
expressions obtained with the Morse function, and because it does give a
quite good fit to the actual potential in the region of r = r,, the Morse
function has been widely used.

Dependence of Energy on Isotopic Masses. Since the frequencies of
[ines in microwave spectra can be measured with great precision, and
since they can be used to evaluate the molecular moment of inertia, they
" permit an accurate evaluation of stomic or nuclesr masses, or rather the
mass ratios of isotopic nueclei.

To a good approximation we can use the Morse potential solution.
The usual expansion for energy levels, appropriate to the Morse potential
or other similar potentials, is given by (1-27), from which the frequency
of a microwave rotational transition, where J changes by one unit, is
easily shown to be

W =W,

. = 2B,(J + 1) — 2a,(v + D + 1) — 4D(J + 1)3

= 2B,(J + 1) + 4D,(J + 1)* (1-37)
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The constants B, a, and D, are usually expressed in em—! in optical
work. In the above formula they, and therefore the frequency, are in
cycles per second, which may be divided by 10° to convert to megacycles,
the most usual unit for microwave work.

B, and a, can be evaluated directly from microwave spectra if two
lines can be measured with different values of v; for instance, the same
rotational transition in the ground vibrational state and the first excited
vibrational state. The term in (J + 1)* is often negligible because
D, = (4B%/w?) is smaller in magnitude than B, by 4{B,/w,)3, or approxi-
mately 10— for most molecules. However, for very light molecules or
large J this term may be rather prominent. When required it can be
calculated with sufficient accuracy from Bo =~ B. and w,, which is usually
obtainable from optical spectra.

If the nuclear masses are known from mass spectrographic or other
measurements, a determination of B, allows an evaluation of the inter-
nuclear distance r,, since B, i8 related to the moment of inertia 7,.

1, h
Te = \/‘—;' = \/m (1—38)

where p = MM/ (M1 + M) is the reduced mass. The accuracy with
which r, can be determined for a distomic molecule is limited mainly by
tha error in Planck’s constant h, which is required to calculate I, from
B.. The best available value of this constant is

h = (6.6252 + 0.0005) X 10~* erg-sec

[795} so that r can be determined to an accuracy of about 1 part in 6000.
It is often convenient to have B, in megacycles, 7, in angstroms, and u in
. atomic mass units. In these units

_ 5.055 X 10° _ I, in egs units )
L= ———p — = 16598 X 10-© - (1-39)
and
13
re = \/5—(25’—5;32(——1—9- angstrom units (1-40)

Table a gives the constants of & number of representative diatomic mole-
cules. Table 1b lists certain constants of one isotopic species of all
diatomic molecules whose microwave rotational spectrum have been
_ studied. v

If the spectroscopic constants have been measured for one isotopic
species of a molecule, their values for other species may be found from the
following relations which are deducible from Eq. (1-28):

moeL Bl el Do (1-41)
Vi u ut M

The values in Table 1a have been calculated with the aid of these relations
in some cases.



