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PREFACE

This book presents one way of looking at the manner in which the
biological, physical, and cultural systems that mantle the landmasses
of our planet receive, transform, and give off energy, which is an es-
sential condition of existence that takes many forms. Energy conversions
establish the climate in which these systems operate.

The principal forms of energy that are converted at the ecosystem
scale include radiant, latent, mechanical, chemical and fossil, and ther-
mal. We begin with radiant energy absorbed by ecosystems, a phenom-
enon that is independent of their surface temperature and that can be
looked on as a burden or a gift, depending on circumstances. An increase
in such absorption raises surface temperature, as described in the ful-
crum chapter of the book, Chapter VIII. This increase in turn sets into
action outflows of energy that by the first law of thermodynamics are
equal in energy units, although not necessarily equal in quality to the
inflows. While the second law comments that quality is likely to suffer
in such a transaction, our principal tool of analysis is the first-law equiv-
alence, which can be stated as a simple accounting in watts per square
meter of ecosystem area. These temperature-dependent fluxes of energy
are discussed in the chapters following Chapter VIII; the final chapters
deal with vertical stratification and areal contrasts in energy budgets,
the augmented energy budget of the city, and the responses that serve
to keep the budget balanced.

Anyone who looks at the landscape perceptively, whether in wild-
lands, cultivated areas, or the city, can see energy in movement or trans-
formation everywhere; awareness of the environment as a functioning
entity is enhanced, I believe, by recognizing the manifestations of energy
in it. I first encountered this way of analyzing nature when studying
snowmelt floods that had occurred and that conceivably might occur in
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Xiv PREFACE

the Sevier River in Utah; subsequently I applied energetics to another
system—the clothing that protects a soldier from a hostile thermal en-
vironment. In both cases, seemingly so far apart, much the same energy
fluxes are important, and it appeared that an organizing concept that
could make sense out of such different situations had much to commend
it as a means of studying a set of objects in which I had long had interest,
the ecosystems that comprise the variegated surface of the earth. It is
true that energy budgets are routinely cast for thermodynamic systems
in such artifacts as engines and houses, others for atmospheric motion
systems, others within leaf cells, others encompassing an entire planet
or star; but here we select for energetic analysis only those systems that
are located at the outer active surface of the lands, confronting sun and
atmosphere and functioning at the scale of ecosystems. Smaller systems
(e.g., leaves) are considered in passing, and the scale is enlarged only
slightly to take in cities, those fascinating interminglings of human and
natural systems, still terrae incognitae to science and yet whose working
and very survival are basically expressed in their energetics. The un-
certain future of fossil energy poses questions for wildland and agri-
cultural ecosystems too, but nowhere more than for the vulnerable mod-
ern city.

My aim is not to tell everything about any one energy flux or any
ecosystem, but to try to develop a proportioned and numerically illus-
trated treatment that will help the reader see each flux in its true setting
and observe ecosystems coupled into their environments. Because real
measurements carry more conviction, I have preferred observed data,
many of them from sites I have visited or worked in, over modeled or
assumed or asserted quantities or mere symbols divorced from numer-
ical content. Similarly, I have not repeated oversimple formulas for the
fluxes, but prefer that the reader who finds it necessary to estimate
should refer to the original articles, where qualifications and cautions
were set out by the field worker.

Study of the energetics of systems at the surface of the earth draws
upon the content of several disciplines, each of which has its own objects
of study and its own way of viewing the rest of creation. No single
discipline—not meteorology, not hydrology, not ecology, not geog-
raphy-—and no practitioner field—forestry, agronomy, architecture, city
planning, or engineering—can encompass the subject essayed in this
book. Although these fields make use of energetics as a mode of in-
vestigation, they do so only in an auxiliary role. Accordingly, I make
no attempt to summarize the principles or content of any discipline, but
rather select what it can contribute toward interface energetics. Contri-
butions to the resulting synthesis, if such it is, have come from many
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disciplines of science and practice and I hope the synthesis will give
back to each field as much as it takes; for example, the climate of the
soil and the structure of the atmosphere are governed by energy fluxes
at the interface between these adjoining media.

Spatial contrasts in energy reflect contrasts in geology, soil conditions,
hydrology, topography, solar input, and atmospheric coupling, as well
as in cultural practices, and at the same time heighten contrasts in the
landscape. Energetics analysis helps us to perceive the true variety of
the world, and beyond these hoped-for contributions to individual dis-
ciplines I hope that ecosystem energetics may contribute in a small way
to the riddles of food production and overpeopling of the earth, energy
and water resources, urbanization, and the imperiled environments of
life.

Different forms of energy have different kinds of utility and are the
provinces of different disciplines, but there exists behind this diversity
of appearance a unity of essence. The energy problems besetting the
world are not likely to yield to single disciplines, each regarding its own
form of energy as if it had little to do with other forms and generating
its own specialized data. In the service of a broader integration I have
tried to use data from these disciplines to make sense of it all. How well
the resulting picture captures nature is for the reader to say.
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Chapter 1

INTRODUCTION

THE ENERGY BUDGET

Energy, a basic quantity in the universe, is present at the surface of
the earth in many forms, so diverse that recognition of its continuity
was a major intellectual feat of 19th century scientists. Familiar changes
in its form are the absorption of solar energy by plant leaves, emission
of longwave radiation by all surfaces, formation of chemical energy from
radiant, its release in decomposition of organic material, and energy
going into latent form when water evaporates or snow melts.

Transformations imply inputs and outputs of energy. Inputs include
the delivery of energy as sunshine to an ecosystem, the sensible heat
it extracts from warmer air, and the return of heat in winter from warmer
layers of an aquatic system to its cold surface. Outputs from ecosystems
include energy that is radiated away or carried off in the atmosphere
or carried off in the harvest.

Budget accounting of inputs and outputs shows that when all forms
of energy flow are considered, the inputs balance the outputs. This state-
ment of continuity is the first law of thermodynamics, that energy is not
created or destroyed. It says nothing about the quality of energy of
different forms; that is a matter of the second law, which indicates the
ability of a particular form of energy to do useful work. Solar and chem-
ical energy have higher quality than thermal energy at ecosystem tem-
peratures or longwave radiation (Moore and Moore, 1976, p. 73;
Lonnroth et al., 1980). These considerations suggest direction of trans-
formation, but our concern here is primarily with first-law accounting.
Determining an energy budget for a surface is a matter of striking an
account of all the inputs and outputs, and the necessity for them to be
in balance provides a quantitative check on the measurements. The

1



2 I. INTRODUCTION

concept is straightforward. Problems arise in applying the budget over
time and space.

Variability over Time and Space

The budget by definition is never out of balance; if any input increases,
one or several outputs increase to the identical amount. While the bal-
ance remains, the mix of its constituents changes. Some variations are
regular, like summer and winter, and seasonal budgets show how an
ecosystem responds to a change in energy loading. Sudden changes,
like the arrival of a cold wave, show in a different way how the system
responds. Variability is generated both by extraterrestrial changes,
which are relatively regular, and by systems in the earth’s atmosphere
since the clouds and wind of a passing storm cause fluctuations in energy
budgets at the underlying ecosystems.

Spatial differences in the energy budget occur at many scales, among
which we will be primarily concerned with those of ecosystems and
secondarily with differences within ecosystems and contrasts among
them. Energy fluxes differ from place to place and thereby depict in a
physical way the variety we see in the world around us.

Components
Let us list the basic energy fluxes that are found in ecosystems:

(1) Solar (or shortwave) radiation absorbed by an ecosystem;

(2) Longwave radiation from the atmosphere absorbed by an
ecosystem,;

(3) Photosynthetic conversion of solar energy;

(4) Energy released by decomposition and from fossil sources;

(5) Emitted longwave (thermal) radiation from leaves;

(6) Heat converted in evaporation and in melting snow;

(7) Heat taken into the ground at certain times and released at others;

(8) Sensible-heat flux from the surface into the air;

(9) Conversions of kinetic and potential energy, such as wind
energy.

Sum: All of the above total to zero if we assign a positive value to inputs
and a negative value to outgoes.

Our emphasis is on the rates of transformations and flows—the dy-
namics of energy. The watt appears more often than the joule, and the
watt per square meter still more often (see Table I).
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TABLE |

Approximate Conversions to Older Metric and Traditional Units

1joule (J) = 0.24 gram-calorie (cal) = 0.28 X 10~ 3 watt-hours (W h) = 0.95 x 10~3 Btu
1MJ m "% = 24 gram-cal cm ? = 24 langley (ly) = 88 Btu ft 2
1 watt (W) = 1]sec! = 0.24 cal sec’ ' = 3.4 Btu hr !

1
1Wm 2= asly min~' = 0.086ly hr ! = 2.06lyday~! = 0.32Btu ft" 2hr !

THE LOCUS OF ENERGY TRANSFORMATION

Energy transactions are studied in many kinds of systems, initially
in steam engines, later in natural systems. In any thermodynamics in-
vestigation it is first necessary to delimit a system as an object of study.
We can then distinguish its internal processes from the energy inputs
and outflows that express its relations with the rest of the world.

In studying energy transactions at the surface of the earth, the most
convenient system to define is the ecosystem. This is a biological concept
that expresses the structure of the earth’s green mantle and can be ex-
panded to include aquatic systems, desert surfaces where plants are
sparse, winter snow cover, and urban systems. Ecosystems are as con-
venient for energy studies as for water studies because they are rea-
sonably homogeneous pieces of the earth’s surface. Many of them are
stratified in the vertical, but are effectively uniform in the horizontal and
delimited by sharp edges (Fig. 1). A person flying over Wisconsin sees
a mosaic of contrasting ecosystems-—woodlots, corn, alfalfa, and oat
fields; each unit is uniform horizontally. In wildlands too ecosystems
of reasonable homogeneity make up the whole landscape. Rocky ridges,
meadows, pine stands, and brush fields: each is internally uniform.

For reasons that are not entirely clear, the spatial scales of ecosystems
in human landscapes are of about the same size, i.e., a horizontal extent
of a hundred to a few hundred meters (Miller, 1978). In agricultural
lowlands sizes are related to cultivation practices and the size of the
total farm or unit of land management. In uplands ecosystem sizes are
related to dissection of the surface, which produces slope facets of
differing exposure to sun and wind; the different inputs of water and
energy support different kinds of ecosystems. These entities can be
compared on a unit-area basis by use of data expressed as energy flux
density (watts per square meter).



