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1 INTRODUCTION

Mathematical programming is a branch of optimization theory in which
a single-valued objective function f of » real variables x;,, ..., x, is mini-
mized .(or maximized), possibly subject to a finite number of constraints,
which are written as inequalities or equations. Generally we can define a
mathematical program of, say, minimization as

(MP) min f(x) (1.1
subject to
gx)=0, i=1....,m (1.2)
BH=0, j=1...,p (1.3)

where x denotes the column vector whose components are x,,...,x,.
In other words, (MP) is the problem of finding a vector x* that satisfies
(1.2) and (1.3) and such that f(x) has a minimal—that is, optimal value.
If one or more of the functions appearing in (MP) are nonlinear in x, we
call it a nonlinear program, in contrast to a linear program, where all these
functions must be linear. The study of some basic aspects of nonlinear -
programming is the subject of this book.

Nonlinear programming problems arise in such various disciplines as
engineering, economics, business administration, physical sciences, and
mathematics, or in any other area where decisions (in a broad sense) must
be taken in some complex (or conflicting) situation that can be represented
by a mathematical model. In order to illustrate some types of nonlinear
programs, a few examples are presented below.
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NONLINEAR CURVE FITTING

Suppose that in some scientific research, say in biology or physics, a
certain phenomenon f is measured in the lahoratory as a function of time.
Also suppose that we are given a mathematical model of the phenomenon,
and from the model we know that the value of f is assumed to vary with
time 7 as

f(@) = x, + X exp (—x31). (149 /

The purpose of the laboratory experiments is to find the unknown param-
eters x,, X,, and x, by measuring values of f at times t, 3, ...,tM. The
decision-making process involves assigning values to the parameters, and it
is reasonable to ask for those values of x;, x,, and x; that are optimal in
some sense. For example, we can seek optimal values of the parameters in
the least-squares sense—that is; those values for which the sum of squares
of the experimental deviations from the theoretical curve is minimized.
Formally, we have the nonlinear program |

min Fxy 33, 5) = S0/ =51 — % exp (—x0F. (1)

Note that this is an unconstrained program that, if solved, may yield un-
acceptable values of the parameters. To avoid such a situation, we can
impose restrictions in the form of constraints, For example, the parameter
x5 can be restricted to have a nonnegative value—that is, :

x3 > 0. (1.6)

Also suppose that, for the particular phenomenon under consideration,
the mathematical model proposed can be acceptable only if the parameters
are so chosen that at ¢ =0 we have f(0) = 1. Hence we must add a con-
straint ’ . ' -
x;+x, =1 (1.7)

Solving (1.5), subject to (1.6) and (1.7), is then a constrained nonlinear
programming problerf® having a ponlinear objective function with linear
inequality and equality constraints.

LOCATION PROBLEM

Suppose now that the location of a supply center to serve m customers
having fixed spatial locations in a city must be selected. The commodity to
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be supplied from the center may be electricity, water, milk, or some other
goods. The criterion for selecting the location of the supply centeér is to
minimize some distance function from the center to the customers. It may
happen, for example, that we are interested in minimizing the maximal
distance from the center to any particular customer. Since the supply of
goods in this city must be along perpendicular lines (e.g., streets), the appro-
priate distance function is the so-called rectangular distance. Stating it as -
a mathematical model, let (x,, x,) denote the unknown location (coordinates)
of the supply center and let (a', b) be the given location of customer j.
Our problem is then

min {max la — x|+ |8 — x, 11}, (1.8)

Xy, 2y 1<

where the preceding formulation means that, first, for every possible value
of (x,, x,) we must find that index i that maximizes the rectangular distance
given between the square brackets, and, second, among all those maximal
distances, depending on (x,, x,), we must find the smallest one. Again, if
every location (x,, x,) is acceptable, then our problem is an unconstrained
one. Sometimes, however, it is advantageous to simplify some expressions
at the expense of adding extra variables and constraints. For example, define
a new variable x, by

= max [|a‘——x1|+|b‘—x,|] (1.9
) 1<t<m ,
or ' - .
x> \a — x|+ ¥ — x;], i=1...,m (1:10)

 We obtain, consequently, a nonlinear program in three variables x,, x,, x;:

min f(x) = x, (1.11)
subject to o

gX) =x,— & — x| — |V —x,| =0, i=1...,m (112}

The readér can easily verify that pr?blems (1.8) and (1.11) to (1.12) are
equivalent in the sense that (x¥, x¥) is an optimal solution of (1.8) if and
only if (x}, x¥, x}) is an optimal solution of (1.11) and (1.12) with

= |a* — xt| +]b* — x}| (1.13)

for some k, 1 << k < m. The reader can also show that, by mtroducmg more
variables, (1.8) can be transformed into a linear program.
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PROCESS DESIAGN

Consider the problem of manufacturing a given quantity F, gram moles
per hour of chemical product B from a feed consisting of an aqueous solu-
tion of reactant A4, in a continuous stirred tank (backmix) reactor. The chem-
ical reaction is

24— B (114

with an empirical rate equation, established in the laboratory and based on
unit volume of reacting fluid,

dC,, 2 2 g mole ,
— G~ BHCY = 84C1 — ) (l—“e—rhr) (1.15)

where C, = concenttation of A in the reactor (g mole/liter)
- C*% = concentration of A in the feed (g mole/liter)
t = time (hours)
Xy = conversxon fraction of reactant converted mtd product.

: Suppose that the feed solution is available at a continuous range of
concentrations of A and that its unit cost p, is given by the relation

= HCP"* (8/kiter). (1.16)
The operating cost of the continuous stirred tank reactor (CSTR)is given by
Pcste = 0.75(F)°¢  (§/hn), (1.17)

where ¥ (liter) is the volume of the reactor. Assume that the product B
can be sold at a price of 10 $/g mole. Our problem is to determine the rate
of feed solution F¥ (liter/hr), its concentration C§, the volume of the.reactor
¥, and the conversion x, for optimum operation—that is, for maximizing
total profit per hour—given by

pr = 10F; — pF§ — Pcsin (§/hr). (1.18)
Material balance around the reactor yields
FSCS = FCY(1 — x,) — ("CA) V. (1.19)

From (1.14) we get
yFiCox = Fy (1.20)
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‘and from (1.15) and (1.19) we obtain

8.4CY1 — x,)*V — Fix, =0, ' (1.21)
‘Our design problem then becomes

max pr = SFiCox, — ACY'F; — 0.75(V)°s (1.22)

subject to constraint (1.21). This is a nonlinear program in variables co,
F%, V, x, in which both the objective and the constraint functions are non-
linear. Note that here the objective function is maximized.

Throughout the text we shall mainly be concerned with nonlinear
programs in which the objective function is minimized. This does .not
represent any restriction, since every problem of the type max f()
can be equivalently analyzed and solved by considering min f(x), where
f(x) = —f(x). | : ' :

Finally, a few words on notation and terminology used in later chapters.
No special symbols will be used to denote vectors. The dimension of a vector,
if not specifically mentioned, should always be clear from the formula in
which it appears. All vectors are assumed to be column vectors. Components
of a vector will be denoted by subscripts; thus x,, x,, . . . ;' x, are the com-
ponents of the n vector x. Superscripts on vectors will be used in order to
distinguish between different vectors; thus x!, x2, . .. , X™ are meant to be
m different vectors. In order to avoid confusion, exponents on real numbers
will be used together with parentheses; that is, (2)? is the square of the num-
ber a. The notation x” will be uséd to indicate a row vector—that is, the
transpose of a column vector. The real line, that is, the set of all real numbers,
is denoted by R and the a-dimensional real Euclidean space by R*. Vectors

X € R* are also frequently refersed to as points in R®. Specific points in R* °

will frequently be written in terms of their coordinates—for example, x° =
(1, —2). The notation x > 0 means that every component of x is norymega-
tive; thus if x € R, then 0 is also an n-dimensional vector, each component

of which is zero. The notation x = 0 means that at least one component of

x is different from zero.

Only matrices having real elements will be used. Similar to vectors,
no special symbols will be used for matrices (although capital letters will
generally be employed). The dimension of a matrix will also be uniquely
determined from the formula in which it appears. If 4 is an m X 7 matrix
(m rows and n columns), then A7 is the transpose of A, having n rows and
m columns. The inverse of a matrix 4 will be denoted by A-'—that is,
AA~! = A™'A = I, where I is the identity (unit) matrix.
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Norm of a vector x € R" is defined by
Hxll = () + (x3)* + -+ + ()2 (1.23)
We shall frequently use the notion of neighborhoods. A set.
Ny(x®) =f{x:x € R, [|x — x°|| < 8}, (1.29)
where § is a positive number is called a (spherical) ne:ghborhood of the

poiat x°,

Matrix norms will be used in a few places in the text and thea they
will be the norms induced by vectors. Formally, if A is an m X n matrix
andxlsannvector then

141 = sup (A5 112 0] = sup QL axll:Nxll = 1), 129

Functions will be always single valued; and as we shall see later, they
can sometimes take on the values +oo or —oo. In the few places where a
more advanced mathematical concept is needed, we either define it in the
text or, if such a definition would require extensive background matecial, we
sacrifice’ completeness and refer the reader to appropriate referenoes. Those
readers unfamiliar with elementary linear algebra, real analysis, or topology
may wish to consult introductory textbooks on these subjects, such as -
-Apostol [1], Bartle [2], Hall and Spencer {3], and Noble [4].
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The solution of -a nonlinear programming problem, if not specified
otherwise, consists of finding an optimal solution vector x* and not all

optimal solutions that may exist. Recognizing an optimal x* and studying -

its properties form the central theme of the first part of this book, which
deals with some analytic aspects of nonlinear programming problems. We
shall see that if a vector x is a candidate for an optimal solution, it must
satisfy certain necessary conditions of optimality. Unfortunately, however,
there may be vectors other than the optimal ones that also satisfy these
conditions, Consequently, necessary conditions are pnmanly useful in the
negative sense: if a vector x does not satisfy them, it cannot be an optimal
solution. To verify optimality, we may, therefore, look for sufficient condi-
tions of optimality that, if satisfied together with the necessary ones, give
a clear indication of the nature of a particular solution vector under con-
sideration. These two types of optimality conditions constitute the first
subject to be discussed in some detail. In particular, the classical method
of Lagrange multipliers is exteiided to optimization problems with inequality
constraints. In a general nonlinear program it may happen that vectors
satisfying one type of optimality conditions do not satisfy the other one.
Programs in which necessary optimality conditions are also sufficient are
important, since a solution of a system of equations and inequalities repre-
senting, say, necessary conditions of optimality in a program under consider-
ation is ensured as the sought optimum of that program.

A class of nonlinear programs, called convex programs and mvolvmg
convex and concave functions in a certain configuration, possesses this nice
property. Such convex programs are especially convenient to analyze. Asso-
ciated with each such program there exist so-called dual programs, which,
similar to linear programming, have some interesting theorencal properties.
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Duality relations will be derived with the aid of a modern approach based
on conjugate functions.

Convex programs belong to that class of nonlinear programs in which
évery local minimum is global. Since there are many nonconvex real-life
problems, we shall also be concerned with the important question of &ading
more general nonconvex functions and programs for which this local-global
optimum. property holds. The analysis part of this text will conclude with o
few selected nonlinear programs in which some of the theoretxal resuits

- will be illustrated.



CLASSICAL OPTIMIZATION—
2 UNCONSTRAINED AND EQUAI.ITY
'CONSTRAINED PROII.EMS

The problem of finding extrema—that is, minima or maxima of real-
valued functions—plays a central role in mathematical optimization. We
begin the topic of extrema with the simplest case of unconstrained problems
and then proceed to the subject of minima and maxima in the presence of
constraints, expressed as equations. Here we shall treat the classical La-
grange multiplier theory and some necessary and sufficient conditions for
extrema of differentiable functions. Treatment of these topics goes back a
few centuries, hence thie name “classical.’® In later chapters we.shall discuss
optimization problems in which the constraints are expressed as inequalities.
All the remarkable results obtained for such problems can be classified as
“modern” because they are a consequence of intensified interest in inequality
constrained problems during the last two to three decades. All the “classical”
results can be considered as special cases of the more general “modern”
theory. We chose to present the classical results first because they can serve
as a bridge between the material presented in most first- and second-year
university courses of calculus or real analysis and the more advanced subject
of mathematical programming. In addition, the classical theory is simpler
than the modern theory in the sense .that results, such as necessary and
sufficient conditions for extrema, are not pbscured by the more complicated
requirements in the case of inequality corbtraints.

21 UNCONSTRAINED EXTREMA

Consider a real-valued function f with domain D in R". Then fis said
to have a local minimum at a point x* ¢ D if thcre exists a real number
J > 0 such that

@ f6*) | @
9
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for all x € D satisfying ||x — x*|| < . We definc a local maximum in a
similar way but with the sense of the inequality in (2.1) reversed. If the
inequality (2.1) is replaced by a strict inequality

fx) > f(x*), xe D, x#x* Y

we have a strict local minimum; and if the sense of the inequality in (2.2)
is reversed, we have a strict local maximum. The functiorr f has a global
minimum (strict global minimum) at x* € D if (2.1) [or (2.2)] holds for all
x € D. A similar definition holds for a glebal maximum (strict global
maximum). An extremum is either a minimum or a maximum. Not every real
function has an extremum; for example, a nonzero linear function has no
" extremum on R". It is clear from these definitions that every global minimum
(maximum) of fin D is also a local minimum (maximum). The converse of -
this statement is, in general, false, and the reader can easily demonstrate it
by examples. In later chapters we shall discuss functions, such as convex
functions, that, however, have the remarkable property that every local
minimum is also a global minimum.

Let x € D = R be a point where the real function f is differentiable.
Recall that if a real-valued function f is differentiable at an interior point
‘x € D, then its first partial derivatives exist at x. If, in addition, the partial
derivatives are continuous at x, then fis said to be continuously differentiable
at x. Similarly, if £ is twice differentiable at x € D, then the second partial
derivatives exist there.'And if they are continuous at x, then f'is said to be
‘twice continuously differentiable at x. We define the gradient of fat x as the
vector V f(x), given by

X

. Similarly, if f is twice differentiable at x, we define the Hessian matrix of f
at x as the n X n symmetric matrix V2f(x), given by

Vif(x) = l:a f(x) . i,j=l,---,"- (2;4)

In this section we discuss necessary and sufficient conditions for extrema of
functions without constraints. We start by stating the following well-known

result.

" Theorem 2.1 {(Necessary Condition)

Let x* be an interior point of D at which f has a local minimum or local -
maximum. If f is differentiable at x*, then
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V/(x*) = 0. Q.5)

This theorem will be restated and proved as part of Theorem 2.3.
Now we turn to sufficient conditions for a local extremum.

Theorem 2.2 (Sufficient Conditions)

Let x* be an interior point of D at which [ is twice continuously differen-
tiable. If
Vi(x*)=0 (2.6)
and ‘ .
VI f(x*)z >0 A

Jor all nonzero vectors z, then f has a local minimum at x*. If the sense of the
inequality in (2.7) is reversed, then f has a local maximum at x*. Moreover,
the extrema are strict local extrema.

This theorem can be proved by using the Taylor expansion of f and is -
left for the reader. ' ,

In both theorems we are utilizing the behavior of the function at x*, the
extremum. If, however, we can investigate the behavior of the function in-
some neighborhood of the extremum in question, we have a result that pro-
vides additional conditions for a local extremum.

Theorem 2.3

Let x* be an interior point of D and assume that f is twice continuously
differentiable on D. It is necessary for a local minimum of f at x* that

Vi(x*)=0 (2.8)
and
V3 (x*)z =0 2.9)

for all z. Sufficient conditious for a local minimum are that (2.8) holds and
that for every x in some neighborhood Ny(x*) and for every z € R*, we have

2V f(x)z > 0. (2.10)

If the sense of the inequalities in (2.9) and (2.10) is reversed, the theorem applies
to a local maximum. '

Proof. Suppose that f has a local minimum at x*. Then
Fx) = f(x*) @.11)

for all x in some neighborhood Nx*) = D.
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[}

We can write every x € N(x*) as x = x* + 0y, where 0 is a real num-
ber and y is a vector such that || y|['= 1. Hence

SG* +0) = () .12)

for sufficiently small |8|. r
For such a y, we define F by F(@) = f(x* + 8y). Then (2.12) becomes

F@) = FO) (2.13)

for all @ such that [0| < J.
From the Mean Value Theorem [1], we have

F() = Q) + VF(40)0, .19

where A is a number between 0 and 1.
If VF(0) > 0, then, by the continuity assumptions, there exists an ¢ > 0
such that

VF(A8) >0 (2.15

for all 1 between 0 and 1 and for all @ satisfying |#| < €. Hence we can find
a @ < 0 such that |#| < J and

F(0) >-0), (2.16)

a contradiction. Assuming that VF(0) < 0 would lead to a similar contradic-
tion. Thus !

VF0) = y"V f(x*) = 0. 2.17)
But y is an arbitrary nonzero vector. Hence we must have
Vi(x*)=0. (2.18)

Turning now to the second-order conditions, we have, by Taylor’s
theorem, )

F@) = F©0) + VF0)8 + IV2F(A6X06)*, 1>4>0. (2.19)
If V2F(0) < 0, then, by continuity, there exists an €' > 0 such that
V2F(A6) <0 (2.20)

for all 2 between 0 and 1 and for all 8 satisfying |6] < €.
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Since VF(0) = 0, (2.20) would imply for such a @ that
F(#) < F0), (2.21)
a contradiction. Conseqyently,
V2R(0) = )"V f(x*)y 2 0. 2.22)

Since this inequality holds for all y, subject to the arbitrary restriction on the
norm of y, it must hold for all vectors z. This completes the proof of the first
part of the theorem.

For the second part, suppose that (2.8) and (2.10) hold but that x*
is not a local minimum. Then there exists a w € Ny(x*) such that f(x*) >
S(w). Let w = x* + 8y, where |||l =1 and 8 > 0. By Taylor’s theorem,

Sw) = f(x*) + VS (x*) + HOWYV S (x* + My)y, (2.23)

where 1 > 4 > 0. Our assumptions lead then to
YV f(x* 4 28y)y <0, 2.249)

contradicting (2.10), since x* + A0y € Ny(x*). The proof for a local maxi-
mum is similar. =

Theorem 2.2 provides sufficient conditions for a strict local extremum of
S at x*, based on the behavior of the function at that point. We shall show
that it is easy to find examples of extrema for which these sufficient condi-
tions are not satisfied. In Theorem 2.3 we have sufficient conditions for a
local (not necessarily strict) extremum based on the behavior of £in a neigh-
borhood of x*. Finally, we present sufficient conditions for a strict local
extremum, also based on a neighborhood of x*.

Theorem 2.4

Let x* be an interior point of D and assume that f is twice continuously
differentiable. If

V/iG" =0 (2.25)

and
V2 f(x)z > 0 (2.26)
« for any x # x* in a neighborhood of x* and for uny nonzero z, then f has a

strict local minimum at x*. Reversing the sense of the inequality in (2.26)
results in sufficient conditions for a strict local maximum.



