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Preface to Second Edition

During the eleven years since publication of the first edition of this
book, applications of NMR in chemistry and biochemistry have
mushroomed. With the discovery of new NMR phenomena and the spec-
tacular development of NMR instrumentation, the types of problems
amenable to solution by NMR are steadily increasing. For example, two
major areas that had only limited NMR study eleven years ago—solid
state phenomena and biochemical processes—are now among the most
exciting and rapidly growing fields of NMR research. The advent of rou-
tine carbon-13 NMR spectrometers has had a major impact on the use of
NMR in organic structure elucidation, and the now routine high field mul-
tinuclear spectrometers promise to be of great value in inorganic and me-
tallo-organic chemistry.

In revising this book, I have tried to retain the basic organization and
presentation that proved successful in the first edition. Large sections on
basic principles, chemical shifts, coupling constants, and analysis of com-
plex spectra have been changed only slightly. On the other hand, many
parts have been expanded substantially—for example, carbon-13, nu-
clear Overhauser effect, relaxation mechanisms, and use of supercon-
ducting magnets, each of which was treated only briefly in the first edi-
tion. Fourier transform methods, which were covered in one paragraph in
the first edition, now take up an entire chapter. As in the first edition,
problems are given at the ends of most chapters, with answers to selected
problems provided in Appendix D. The original collection of proton spec-
tra of “‘'unknowns’’ (Appendix C) has been augmented with a number of
carbon-13 spectra.



Preface to First Edition

Few techniques involving sophisticated instrumentation have made
so rapid an impact on chemistry as has nuclear magnetic resonance.
Within five years after the discovery that NMR frequencies depended
upon the chemical environments of nuclei, commercial instruments capa-
ble of resolving resonance lines separated by less than 0.1 part per million
(ppm) were available. Chemists immediately found NMR to be a valuable
tool in structure elucidation, in investigations of kinetic phenomena, and
in studies of chemical equilibria. Rapid developments in our understand-
ing of NMR phenomena and their relation to properties of chemical inter-
est continue today unabated, and dramatic instrumental developments
have improved resolution and sensitivity by factors of ~50 from the first
commercial instruments. Today more than 1500 NMR spectrometers are
in use, and the scientific literature abounds in reference to NMR data.

In the course of teaching the background and applications of NMR
both to graduate students and to established chemists who wanted to
learn more of this technique, I have felt the need for a textbook at an *‘in-
termediate’’ level of complexity —one which would provide a systematic
treatment of those portions of NMR theory most needed for the intelligent
and efficient utilization of the technique in various branches of chemistry
and yet one which would avoid the mathematical detail presented in the
several excellent treatises on the subject.

In this book I have attempted to present an explanation of NMR the-
ory and to provide sufficient practical examples of the use of NMR to per-
mit the reader to develop a clear idea of the many uses—and the limita-
tions—of this technique. Many practical points of experimental methods
are discussed, and pitfalls pointed out. A large collection of problems and
spectra of ‘‘unknown’’ compounds of graded difficulty permits the stu-
dent to test his knowledge of NMR principles. Answers to selected prob-
lems are given. I have not attempted to include large compendia of data,
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xiii Preface to First Edition

but ample literature references and lists of data tabulations and reviews
should permit the reader to locate the specialized data needed for specific
applications. Many of the literature references are to recent reviews or to
other books, rather than to original articles, since the references are
intended to provide guides to further reading, not to give credit for origi-
nal contributions. Under these circumstances an author index would be
pointless and has not been included.
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Chapter 1

Introduction

1.1 Historical

Many atomic nuclei behave as though they are spinning, and as a re-
sult of this spin they possess angular momentum and magnetic moments.
These two nuclear properties were first observed indirectly in the very
small splittings of certain atomic spectral lines (hyperfine structure). In
1924 Pauli! suggested that this hyperfine structure resulted from the in-
teraction of magnetic moments of nuclei with the already recognized mag-
netic moments of electrons in the atoms. Analysis of the hyperfine struc-
ture permitted the determination of the angular momentum and magnetic
moments of many nuclei.

The concept of nuclear spin was strengthened by the discovery
(through heat capacity measurements) of ortho and para hydrogen?—
molecules that differ only in having the two constituent nuclei spinning in
the same or opposite directions, respectively.

In the early 1920s Stern and Gerlach® had shown that a beam of
atoms sent through an inhomogeneous magnetic field is deflected ac-
cording to the orientation of the electron magnetic moments relative to
the magnetic field. During the 1930s refinements of the Stern—Gerlach
technique permitted the measurement of the much smaller values of nu-
clear magnetic moments.* A major improvement in this type of experi-
ment was made by Rabi and his co-workers® in 1939. They sent a beam of
hydrogen molecules through first an inhomogeneous magnetic field and
then a homogeneous field, and they applied radio-frequency (rf) electro-
magnetic energy to the molecules in the homogeneous field. At a sharply
defined frequency, energy was absorbed by the molecular beam and
caused a small but measurable deflection of the beam. This actually was
the first observation of nuclear magnetic resonance, but such studies were

1



2 1. Introduction

performed only in molecular beams under very high vacuum. It was not
until 1946 that nuclear magnetic resonance was found in bulk materials
(solids or liquids). In that year Purcell and his co-workers at Harvard re-
ported nuclear resonance absorption in paraffin wax,® while Bloch and his
colleagues at Stanford found nuclear resonance in liquid water.” (They re-
ceived the 1952 Nobel Prize for their discovery.) When we speak of nu-
clear magnetic resonance, we are really thinking of the kind of NMR dis-
covered by Bloch and Purcell; that is, nuclear magnetic resonance in bulk
materials.

The early work in NMR was concentrated on the elucidation of the
basic phenomena and on the accurate determination of nuclear magnetic
moments. NMR attracted little attention from chemists until, in 1949 and
1950, it was discovered that the precise resonance frequency of a nucleus
depends on the state of its chemical environment.® In 1951 separate reso-
nance lines were found for chemically different protons in the same
molecule.® The discovery of this so-called chemical shift set the stage for
the use of NMR as a probe into the structure of molecules; this is the as-
pect of NMR that we shall explore in this book.

1.2 High Resolution NMR

It is found that chemical shifts are very small, and in order to observe
such shifts one must study the material in the right state of aggregation. In
solids, where intermolecular motion is highly restricted, internuclear in-
teractions cause such a great broadening of resonance lines that chemical
shift differences are masked. In solution, on the other hand, the rapid
molecular tumbling causes these interactions to average to zero, and
sharp lines are observed. Thus there is a distinction between broad line
NMR and high resolution, or narrow line, NMR. We shall deal almost
exclusively with the latter. (With sophisticated methods that we shall
mention later, it is possible in some cases to mask the effects of internu-
clear interactions in solids and thus obtain relatively narrow lines.)

An NMR spectrum is obtained by placing a sample in a homogeneous
magnetic field and applying electromagnetic energy at suitable fre-
quencies. In Chapter 2 we shall examine in detail just how NMR spectra
arise, and in Chapter 3 we shall delve into the procedures by which NMR
is studied. Before we do so, however, it may be helpful to see by a few ex-
amples the type of information that can be obtained from an NMR spec-
trum.

Basically there are three quantities that can be measured in a high res-
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Fig. 1.1 Proton magnetic resonance spectrum of 4-hydroxy-4-methyl-2-pentanone
(diacetone alcohol). Assignments of lines to functional groups as follows: § = 1.23, (CHj),:
2.16, CH,C=0; 2.62, CH,; 4.12, OH. (For definition of § scale, see Chapter 4.)

olution NMR spectrum: (1) frequencies, (2) areas, and (3) widths or
shapes of the resonance lines. Figure 1.1 shows the spectrum of a simple
compound, diacetone alcohol. This spectrum, as well as the others shown
in this chapter, arises only from the resonance of the hydrogen nuclei in
the molecule. (We shall see in Chapter 2 that we normally obtain a spec-
trum from only one kind of nucleus and discriminate against the others.)
The line at zero on the scale below the spectrum is a reference line (see
Chapters 3 and 4). Each of the other lines can be assigned to one of the
functional groups in the sample, as indicated in the figure. The step func-
tion shown along with the spectrum is an integral, with the height of each
step proportional to the area under the corresponding spectral line. There
are several important features illustrated in this spectrum: First, the
chemical shift is clearly demonstrated, for the resonance frequencies de-
pend on the chemical environment, as we shall study in detail in Chapter
4. Second, the areas under the lines are different and, as we shall see
when we examine the theory in Chapter 2, the area of each line is propor-
tional to the number of nuclei contributing to it. Third, the widths of the
lines are different; in particular, the line due to the OH is considerably
broader than the others. We shall examine the reasons for different line
widths in Chapters 2, 8, and 11.
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Fig. 1.2 Proton magnetic resonance spectrum of ferrugone in CDCl;, showing multi-
plets due to spin-spin coupling between protons 5 and 6 and between protons 3” and 4”. As-
signments to functional groups: § = 1.5, CH;: ~3.85. OCH;: ~5.7. H;.: 6.0, OCH,O0: 6.55,
Hg: 6.8, Hg: 6.9, Hyo: 7.27, CHCl;: 7.9, H,: ~8.1 Hg (Highet™).
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Fig. 1.3 Proton magnetic resonance spectrum of CH,=CH —C(0O)—NH, (acryla-

mide) in acetone-ds. Assignments: § = 5.5-6.7, CH,=CH; 7.1 (very broad), NH,;

acetone-ds, 2.07; impurities, 3.45, 6.0.




1.2 High Resolution NMR 5

The spectrum in Fig. 1.1 is particularly simple. A more typical
spectrum—that of a natural product, ferrugone—is given in Fig. 1.2.
This spectrum consists of single lines well separated from each other, as
were the lines in Fig. 1.1, and of simple multiplets. (The inset shows the
multiplets on an expanded abscissa scale.) The splitting of single lines into
multiplets arises from interactions between the nuclei called spin—spin
coupling. This is an important type of information obtainable from an
NMR spectrum. In Chapter 5 we shall inquire into the origin of spin
coupling and what information of chemical value we can get from it.

Figure 1.3 shows the spectrum of a simple molecule, acrylamide. The
three vinyl protons give rise to the 12-line spectrum at § = 5.5-6.7, which
shows little regularity in spacing or intensity distribution. A spectrum of
this sort must be analyzed by procedures that we shall discuss in detail in
Chapter 7. However, the appearance of such complex spectra can be al-
tered substantially by examining the sample at a different magnetic field

2.6-H
4,8-H Irradiated
l,5-H b
1 1
50 40 3.0
8 (ppm)

Fig. 1.4 Part of the proton NMR spectrum of sesamin. Bottom, ordinary spectrum;
top, with additional radio-frequency irradiation in the vicinity of the complex multiplet at the
right of the spectrum.
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Fig. 1.5 Portions of the proton NMR spectra of 4,4,17a-trimethyl-178-hydroxy-5-
androsten-3-one in CDCl; (upper) and in pyridine (lower). Reprinted with permission from
G. Slomp and F. MacKellar, J. Am. Chem. Soc. 82,999 (1960). Copyright by the American
Chemical Society.

strength. Often by increasing the field (and the corresponding observation
frequency) by a sufficient amount the apparently irregular spacings of
lines give way to more readily discerned simple multiplets. In Chapters 4
and 5 we shall see why NMR spectra are dependent on magnetic field
strength, while in Chapter 3 we shall look into many aspects of NMR in-
strumentation.

A powerful method for unraveling complex spectra is double reso-
nance, in which two radio frequencies are applied to the sample simulta-
neously. Figure 1.4 shows the results of one type of double resonance
experiment. Application of an intense rf field at the frequency of the com-
plex multiplet near the right of the spectrum causes the doublet near the
left end of the spectrum to collapse to a single line, while the remainder of



