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Turbulence is a danggmq‘s;‘btdpic which“is often at the origin of se-
rious fights in the scientific meetings devoted to it since it represents
extremely different points of view, all of which have in common their
complexity, as well as an inability to solve the problem. It is even diffi-
cult to agree on what exactly is the problem to be solved.

Extremely schematically, two opposing points of view have been
advocated during these last ten years: the first one is “statistical”, and
tries to model the evolution of averaged quantities of the flow. This com-
munity, which has followed the glorious trail of Taylor and Kolmogorov,
believes in the phenomenology of cascades, and strongly disputes the
possibility of any coherence or order associated to turbulence.

On the other bank of the river stands the “coherence among chaos”
community, which considers turbulence from a purely deterministic po-
int of view, by studying either the behaviour of dynamical systems, or
the stability of flows in various situations. To this community are also
associated the experimentalists who seek to identify coherent structures
in shear flows.

My personal experience in turbulence was acquired in the first
group, since I spent several years studying the stochastic models of
turbulence, applied to various situations such as helical or two dimen-
sional turbulence and turbulent diffusion. These techniques were cer-
tainly not the ultimate solution to the problem, but they allowed me to
get acquainted with various disciplines such as astrophysics, meteorolo-
gy, oceanography and aeronautics, which were all, for different reasons,
interested in turbulence. It is certainly true that I discovered the fas-
cination of Fluid Dynamics through the somewhat abstract studies of
turbulence.

This monograph is then an attempt to reconcile the statistical point
of view and the basic concepts of fluid mechanics which determine the
evolution of flows arising in the various fields envisaged above. It is true
that these basic principles, accompanied by the predictions of the insta-
bility theory, give valuable information on the behaviour of turbulence
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and of the structures which compose it. But a statistical analysis of
these structures can, at the same time, supply information about strong
nonlinear energy transfers within the flow.

I have tried to present here a synthesis between two graduate courses
given in Grenoble during these last few years, namely a “Turbulence”
course and a “Geophysical Fluid Dynamics” course. I would like to
thank my colleagues of the Ecole Nationale d’Hydraulique et Mécanique
and Université Scientifique et Médicale de Grenoble, who offered me
the opportunity of giving these two courses. The students who at-
tended these classes were, through their questions and remarks, of great
help. I took advantage of a sabbatical year spent at the Department
of Aerospace Engineering of the University of Southern California to
write the first draft of this monograph: this was rendered possible by
the generous hospitality of John Laufer and his collaborators. Finally, I
am grateful to numerous friends around the world who encouraged me
to undertake this work.

I am greatly indebted to Frances Métais who corrected the English
style of the manuscript. I am uniquely responsible for the remaining mis-
takes, due to last minute modifications. I ask for the indulgence of the
English speaking reader, thinking that he might not have been delighted
by a text written in perfect French. I hope also that this monograph will
help the diffusion of some French contributions to turbulence research.

Ms Van Thai was of great help for the drawings. I am also ex-
tremely grateful to Jean-Pierre Chollet, Yves Gagne and Olivier Métais
for their contribution to the contents of the book and their help during
its achievement, and to Sherwin Maslowe who edited several Chapters.

This book was written using the TEX system. This would not
have been possible without the constant help of Evelyne Tournier, of
Grenoble Applied Mathematics Institute, and of Claude Goutorbe, of
the University computing center.

Finally I thank Martinus Nijhoff Publishers for offering me the pos-
sibility of presenting these ideas.

Grenoble, October 1986 Marcel Lesieur
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Chapter I

INTRODUCTION TO TURBULENCE
IN FLUID MECHANICS

1 Is it possible to define turbulence?

Everyday life gives us an intuitive knowledge of turbulence in fluids:
the smoke of a cigarette or over a fire exhibits a disordered behaviour
characteristic of the motion of the air which transports it. The wind
is subject to abrupt changes in direction and velocity, which may have
dramatic consequences for the seafarer or the hang-glider. During air
travel, one often hears the word turbulence generally associated with
the fastening of seat-belts. Turbulence is also mentioned to describe the
flow of a stream, and in a river it has important consequences concer-
ning the sediment transport and the motion of the bed. The rapid flow
of any fluid passing an obstacle or an airfoil creates turbulence in the
boundary layers and develops a turbulent wake which will generally in-
crease the drag exerted by the flow on the obstacle (and measured by the
famous C, coefficient): so turbulence has to be avoided in order to ob-
tain better aerodynamic performance for cars or planes. The majority of
atmospheric or oceanic currents cannot be predicted accurately and fall
into the category of turbulent flows, even in the large planetary scales.
Small scale turbulence in the atmosphere can be an obstacle towards the
accuracy of astronomic observations, and observatory locations have to
be chosen in consequence. The atmospheres of planets such as Jupiter
and Saturn, the solar atmosphere or the Earth outer core are turbulent.
Galaxies look strikingly like the eddies which are observed in turbulent
flows such as the mixing layer between two flows of different velocity,
and are, in a manner of speaking, the eddies of a turbulent universe.
Turbulence is also produced in the Earth’s outer magnetosphere, due to
the development of instabilities caused by the interaction of the solar



wind with the magnetosphere. Numerous other examples of turbulent
flows arise in aeronautics, hydraulics, nuclear and chemical engineering,
oceanography, meteorology, astrophysics and internal geophysics.

It can be said that a turbulent flow is a flow which is disordered in
time and space. But this, of course, is not a precise mathematical defi-
nition. The flows one calls “turbulent” may possess fairly different dy-
namics, may be three-dimensional or sometimes quasi- two-dimensional,
may exhibit well organized structures or otherwise. A common property
which is required of them is that they should be able to mix transported
quantities much more rapidly than if only molecular diffusion processes
were involved. It is this latter property which is certainly the more
important for people interested in turbulence because of its practical
applications: the engineer, for instance, is mainly concerned with the
knowledge of turbulent heat diffusion coefficients, or the turbulent drag
(depending on turbulent momentum diffusion in the flow). The follow-
ing definition of turbulence can then be tentatively proposed and may
contribute to avoiding the somewhat semantic discussions on this mat-
ter:

-Firstly, a turbulent flow must be unpredictable, in the sense that
a small uncertainty as to its knowledge at a given initial time will am-
plify so as to render impossible a precise deterministic prediction of its
evolution.

-Secondly it has to satisfy the increased mixing property defined
above.

Such a definition allows in particular an application of the term
“turbulent” to some two-dimensional flows. It also implies that certain
non dimensional parameters characteristic of the flow should be much
greater than one: indeed, let [ be a characteristic length associated to
the large energetic eddies of turbulence, and v a characteristic fluctua-
ting velocity; a very rough analogy between the mixing processes due to
turbulence and the incoherent random walk allows to define a turbulent
diffusion coefficient proportional to [ v . As will be seen later on, !/
1s also called the mixing length. Then, if v and & are respectively the
molecular diffusion coefficients! of momentum (called below the kine-
matic molecular viscosity) and heat (the molecular conductivity), the
increased mixing property for these two transported quantities implies
that the two dimensionless parameters lv/v and lv/k should be much
greater than one. The first of these parameters is called the Reynolds
number, and the second one the Peclet number.

A turbulent flow is by nature unstable: a small perturbation will
generally, due to the nonlinearities of the equations of motion, amplify.

! These coefficients will be precisely defined in Chapter II.
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The contrary occurs in a “laminar” flow, as can be seen on Figure 1,
where the streamlines, perturbed by the small obstacle, reform down-
stream. The Reynolds number of this flow, defined as

Re = [fluid velocity] x [size of the obstacle |/v

is in this experiment equal to 2.26 10~2. This Reynolds number is diffe-
rent from the turbulent Reynolds number introduced above, but it will
be shown in chapter IIl that they both characterize the relative impor-
tance of inertial forces over viscous forces in the flow. Here the viscous
forces are preponderant and will damp any perturbation, preventing the
turbulence from developing.

Figure I-1: Stokes flow of glycerin past a triangular obstacle (picture by
S.Taneda, Kyushu University; from [1], courtesy S. Taneda and “La Recher-
che”)

It may be interesting to ask oneself how turbulence does in fact arise
in a flow. For a vast ensemble of flows, it is the presence of boundaries
or obstacles, which create vorticity (the vorticity is the velocity curl:
w = V x u ) inside a flow which was initially irrotational (i.e. with a
zero-vorticity). The vorticity produced in the proximity of the boundary,
and due to the zero velocity condition imposed on the boundary?, will
diffuse throughout the flow which will generally become turbulent in the
rotational regions. Production of vorticity will then be increased, due to
the vortex filaments stretching mechanism, to be described later. Tur-
bulence is thus associated with vorticity, and it is impossible to imagine

2 in a viscous fluid
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a turbulent irrotational flow. In what is called grid turbulence for in-
stance, which is produced in the laboratory by letting a flow go through
a fixed grid, the rotational “vortex streets” behind the grid rods inter-
act together and degenerate into turbulence. Notice that the same effect
would be obtained by pulling a grid through a fluid initially at rest. In
some situations, the vorticity is created in the interior of the flow itself
through some external forcing or rotational initial conditions (as in the
example of the mixing layer presented later on).

Figure I-2: turbulent jet ( picture by J.L. Balint, M. Ayrault and J.P. Schon,
Ecole Centrale de Lyon; from [1], courtesy J.P. Schon and “La Recherche”)

2 Examples of turbulent flows

To illustrate the preceding considerations, it may be useful to dis-
play some flows which come under our definition of turbulence. Figure 2
shows a turbulent air jet marked by incense smoke and visualized thanks
to a technique of laser illumination.

Figure 3 shows a “grid turbulence” described above.

Figure 4 shows a mixing layer between two flows of different veloci-
ties [2], which develop at their interface a Kelvin-Helmholtz type insta-
bility responsible for the large quasi-two-dimensional structures. Upon
these structures are superposed three-dimensional turbulent small scales
which seem to be more active when the Reynolds number is increased.



Figure I-3: turbulence created in a wind tunnel behind a grid. Here tur-
bulence fills the whole apparatus, and a localized source of smoke has been
placed on the grid to visualize the development of turbulence (picture by J.L.

Balint, M. Ayrault and J.P. Schon, Ecole Centrale de Lyon; from [1], courtesy
“La Recherche”)

Figure I-4: turbulence in a mixing layer [2]. In Figure 4A, The Reynolds
number (based on the velocity difference and the width of the layer at a given

downstream position) is twice Figure 4B’s (courtesy A.Roshko and J. Fluid
Mech.)



Figure I-5: isovorticity regions (corresponding to fluid particles having the
same vorticity) in the two-dimensional numerical simulation of the mixing
layer reported in (3] (courtesy P. Leroy, Institut de Mécanique de Grenoble)




Figure 5 shows a two-dimensional numerical calculation of the vorticity
of the large structures, in a numerical resolution of the equations of the
flow motion in the particular case of the mixing layer [3]. As already
stressed, the resemblance to the spiral galaxies is striking.

The latter structures are often called “coherent” because they can
be found extremely far downstream. But it is possible for them to
become irregular and unpredictable, and constitute then a quasi-two-
dimensional turbulent field. Evidence for that is shown in Figure 6,
corresponding to the same calculation as that presented in Figure 5:
the evolution of the flow after 30 characteristic dynamic initial times
is presented for four independent initial small random perturbations
superimposed upon the basic inflexional velocity shear: the structures
display some important differences, since there are for instance four
eddies in Figure 6-d and only three eddies in Figure 6-b. They therefore
show some kind of unpredictability.

In the mixing layer experiment of Figure 4, the turbulence in the
small scales could be called fully developed turbulence, because it might
have forgotten the mechanisms of generation of turbulence, i.e. the basic
inflexional shear. On the contrary, the large structures depend crucially
on the latter, and the terminology of “developed” cannot be used for
them.

Similar large structures can be found in the turbulence generated
in a rapidly rotating tank by an oscillating grid located at the bottom
of the tank. Figure 7 shows a section of the tank perpendicular to the
axis of rotation.

Here, the effect of rotation is to induce two-dimensionality in the
flow, and to create strongly concentrated eddies with axes parallel to
the axis of rotation [4]. These eddies could have some analogy with
tornadoes in the atmosphere.

As already mentioned earlier, atmospheric and oceanic flows are
highly unpredictable and fall into the category of turbulent flows. Their
dynamics in the large scales is strongly influenced by their shallowness
(the ratio of vertical scales to the horizontal extension of planetary scales
is of the order of 1072 in the Earth’s atmosphere), by the Earth’s sphe-
ricity and rotation, by differential heating between the equator and the
poles, and by topography. Figure 8 shows for instance the eddy field
which can be seen from satellites in the Alboran sea.

The simplified mode! of two-dimensional and quasi- geostrophic tur-
bulence will be considered in chapter IX so as to study the particular
dynamics associated with these flows.

On a planet such as Jupiter which, like the Earth, is rapidly rota-
ting (this concept of rapid rotation can be defined with respect to the
smallness of a dimensionless parameter, the Rossby number, which will



