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Preface

This is a textbook intended to be used in a two-course sequence on signals and systems that
follows an introductory electrical engineering course. As such, it is assumed the student knows
basic circuit concepts and has had a course in calculus and differential equations. This book
provides depth of coverage in both continuous and discrete systems.

Systems courses should contain a substantial mathematical discussion of transforms and,
in addition, there must be a meaningful discussion of practical systems. Rather than discuss
a great many applications which, if considered in sufficient detail, would require more time
than is available in a two-course sequence, analog and digital filtering is discussed in detail.
It is important that the student be capable of both analyzing and designing, or synthesizing,
linear systems. The chapters on the synthesis of signal processing systems reinforce both the
basic discussions of analysis and provide the techniques needed to design the systems.

The book starts by introducing various properties of simple signals and systems. The
fundamental ideas of linear, time invariant continuous-time and discrete-time systems are
introduced in Chapters 2 and and 3. Continuous-time systems are considered in Chapters 4
through 6. Fourier and Laplace transforms are thoroughly covered in Chapters 4 and 5,
respectively. The use of residues is discussed in conjunction with the evaluation of the inverse
Laplace transform. Although a complete discussion of complex variable calculus is not included
here, enough is covered so the student can understand how to apply residues to the evaluation
of complex integrals. The two-sided Laplace transform is presented. General orthogonal
polynomial expansion is discussed in Chapter 4.

Analog filtering is discussed in Chapter 6, both active and passive synthesis techniques.
Butterworth, Chebyshev, and Thompson filters are discussed in detail. Frequency transforma-
tions are presented. The approximation problem is introduced and simple approximation is
discussed.

Discrete-time systems are discussed in Chapters 7, 8, and 9. In addition to discussing the

xi



xii Preface

theoretical aspects of the Fourier transform, computations involving the fast Fourier
transforms are presented. The z-transform is discussed in Chapter 8. Methods for obtaining
the z-transform of a filter function from an analog filter function are presented. Fourier series
procedures for the design of nonrecursive digital filters are developed, and windows are
discussed in detail. Recursive filter synthesis, including wave digital filters, is developed. Linear
phase filters are discussed. Multiplier coefficient sensitivity is considered in detail. Roundoff
noise is considered and the implications of scaling are presented. Limit-cycle oscillations are
discussed. Many problems are included at the end of each chapter.
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Chapter 1

Introduction

In this book we shall study linear systems
and signal processing. In the most general
sense a system is a collection of objects
designed to perform some task. In this book
we shall be concerned with systems that are
used to perform operations on signals. In a
somewhat simplified sense, a signal can be
any mechanism that is used to transmit
information. Examples of information trans-
mitted by signals are: a telephone conversa-
tion, a television picture, a patient’s heart rate
supplied to a recovery room monitor, and the
electromagnetic waves generated by a radar
system that are used to determine an airplane’s
altitude. Signals are sent among the various
parts of a digital computer and between
computers.

Many signals consist of a varying electric
voltage, current, or electromagnetic field. The
signals discussed in the previous paragraph
are often of this form. For example, an
ordinary telephone produces a voltage that
varies with the speaker’s voice. The data
transmitted between computers is often in the
form of pulses of voltage. Signals can be
transmitted using light waves where the
intensity of the light is analogous to the
magnitude of the voltage in an electrical
signal. Signals need not be electrical in nature.

For instance, ordinary sound signals are
variations of air pressure.

Signal processing systems modify the signal
in some way. For instance, a telephone system
converts sound waves into electrical signals,
transmits these signals to the receiver, and
finally converts the electrical signals back into
sound waves. The transmission of the signal
is a complex operation that involves many
types of signal processing. Let us illustrate
this with a representative system. The original
electrical signal is transmitted over wires to
a central office. The signal might then be
modified by a process called modulation to
produce a high frequency signal with the
information contained in the telephone con-
versation. This signal could be transmitted,
using radio (electromagnetic) waves, possibly
via satellite, to a receiving station where it
would be converted back to its original
electrical form. During the process of trans-
mission, the signal could be corrupted by
unwanted signals or noise. This interference
would have to be removed, or at least
substantially reduced. All of these operations
are part of the topic of signal processing.

In this book we shall discuss many of
the systems that are used to perform
signal processing. Powerful mathematical
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2 Introduction

techniques are used to analyze and design
systems. We shall consider these mathemati-
cal techniques and then apply them to the
design of filters that process signals.

1-1. SIGNALS

In this section we briefly consider the various
types of signals to be discussed in this book.
And as we go along, these discussions will be
extended and expanded. The signals that we
shall consider are real functions of time. For
instance,

f@O) = u@®)e™> (1-1)
represents the signal illustrated in Fig. 1-1a.
The function u(t) is called the unit-step and it
is shown in Fig. 1-1b. Note that the unit-step
function is zero for ¢ < 0 and is equal to 1 for
t > 0. In general, the signals that we consider
may be of different shapes, but we shall
assume that each of them can be represented
by some mathematical function.

The signal of Eq. (1-1) is represented by a
function of the single variable ¢, representing
time. Signals can be represented by functions
of more than one variable. For instance,
consider a black and white photograph. At
any point, the intensity of the image can vary
from black to white. In fact, the intensity could
be represented by a numerical scale. For
instance, a value of zero could represent a
black point and a value of 10 could represent
the whitest point in the picture. In such a
scheme, the intensity could be expressed as a
function of two variables representing the x
and y coordinates of each point in the picture.
Such a function could be expressed as f(x, y).
If the picture were received by a black and
white television receiver, it would change with
time. In this case, the intensity would be a
function of three variables, wherein two of
these variables represent position and the
third represents time. This function could be
expressed as f(x, y, t).

Of course, functions can be expressed in
terms of many different independent variables.
For example, the production of wheat could

f@0)
1
0 t
(a)
u(t)
1
0 t
(b)
FIGURE 1-1. (a) A plot of the waveform u(t)e™3;

(b) a plot of the unit-step function u(t).

be expressed as a function of the average
rainfall. However, this book deals with
functions of time.

Signals are categorized as to whether they
are analog or digital. In general, analog signals
represent an operation in some direct way.
For instance, if the signal of Fig. 1-1
represented the sound output of a musical
instrument, then the sound level would be
maximum at ¢ = 0 and fall off exponentially.
A digital signal, on the other hand, takes on
one of only two values, zero (0) and one (1).
The data is encoded according to some
procedure. Binary numbers are often used to
represent these values. A typical digital signal
is shown in Fig. 1-2. Note that the signal level
is either O or 1. (In a digital circuit these are
often represented by two different voltage
levels. These levels, however, do not have to
be zero and one volt, respectively.) The
presence of a pulse represents a one, while the
absence of a pulse indicates a zero. Note that
pulses in Fig. 1-2 are allowed to be present
only in the time intervals,

O0<t<T
2T <t<3T

(1-2a)
(1-2b)
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FIGURE 1-2.  An example of an idealized digital
signal.

The general expression for these time intervals
is

2nT<t<@2n+ 1T n=0,1,2,... (1-3)
Note that there is no signal allowed in the
time intervals

@n+DT<t<@n+2)T n=0,1,2 (1-4)

Digital signals can be considered to transmit
binary numbers. The signal of Fig. 1-2, for
example, transmits the binary number 110111.

The blank intervals between the pulses as
described by Eq. (1-4) do not transmit any
data, either 0’s or 1’s. Thus, they can be
considered to be wasted time. There are
techniques that utilize this time. Using a
procedure called time multiplexing, one or
more additional signals can be transmitted in
the blank spaces. In Fig. 1-2, the blank
intervals between the pulses are of the same
duration as the pulses themselves; this need
not be the case. For example, the blank
intervals could be longer than the pulses
themselves. In this case, another signal could
be transmitted during these “blank spaces”.
Naturally, the proper circuitry would be
necessary to keep the two signals separate.

There are many techniques for transmit-
ting information that is encoded in the form
of binary data. In general, however,
coded binary information is transmitted as a
sequence of 0’s and 1’s.

In many cases the analog signal under
consideration is continuous except for pos-
sibly a finite number of points at which it is
discontinuous. Figure 1-1, for example, repre-
sents a signal that is continuous, except for a
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f@)

FIGURE 1-3.

An example of a complicated signal.

jump discontinuity att = 0. On the other hand,
many analog signals are essentially discon-
tinuous in nature. We shall see that certain
analog signals can be completely determined
by specifying a sequence of values taken at
specified discrete times. The sequence of
samples is essentially discontinuous in nature.
We shall illustrate such sampled signals in the
next section and discuss them throughout the
book.

Often, for instructional purposes, we dis-
cuss functions that have relatively simple
expressions, such as that given by Eq. (1-1).
Real signals are usually far more complex
such as the sample shown in Fig. 1-3. When
necessary we will work with complex signal
forms. Most often, more insight can be gained
by dealing with simpler signals.

1-2. PROPERTIES OF SIGNALS

Even and Odd Functions

There are two special types of functions called
even functions and odd functions. An even
function is characterized by the relation

f@®) = (=0 (1-5)
This means that if t is replaced by —t, the
value of the function is unchanged. Figure 1-4

illustrates an even function. Note that the
curve exhibits mirror symmetry about the

f(t) axis.
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f@®

FIGURE 1-4.  An even function.
f(n)
t
FIGURE 1-5. An odd function.

An odd function is characterized by the
relation

f@© =—f(-v (1-6)

This means that if ¢ is replaced by —t, the

value of the function is multiplied by — 1. Figure

1-5 illustrates an odd function. If the function

were multiplied by —1 for values of ¢t < 0, the
resulting plot would exhibit mirror symmetry

about the f(¢) axis. That is, it would become
an even function.

It is often helpful to write a function as the
sum of an even and an odd function. Let us
demonstrate that this can be done. Suppose
that f(t) is a function of time and that f,(t)
and f,(t) are even and odd functions of time,
respectively. Let us relate f.(t) and f(t) to
f(t) in the following way:

£ = f(t)izf(—-“i) (1-7)
and
fo) = f© _2!11) (1-8)

It can be shown that f,(¢) is an even function
simply by replacing ¢ by —¢ and noting that
f(—[—t]) = f(). When this substitution of
—t for t is made, the right side of Eq. (1-7) is
unchanged. This demonstrates that f.(t) is
indeed even. In a similar way, if ¢ is replaced
by —t the right side of Eq. (1-8) is replaced
by [f(—t) — f(t)]/2. This is the negative of
the right side of Eq. (1-8). Therefore, it has
been demonstrated that f(t) is an odd
function. If Egs. (1-7) and (1-8) are added we
obtain

fO) + fo(©) = f(©) (1-9)
Thus, it has been demonstrated that any
function can be expressed as a sum of even
and odd parts, and that we can use Egs.
(1-7) and (1-8) to break a function into its
even and odd parts.

Periodic Functions

A function that repeats itself every T seconds
is called a periodic function. The mathematical
definition of a periodic function is one that
satisfies the relation

f®)=f@+T) forallt (1-10)

where 7T is a constant. When we deal with



f@®
-3T 2T -T 0 T 2T 3T ¢
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f®
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(b
FIGURE 1-6.  Periodic functions: (a) a triangular

wave; (b) a sinusoid.

real functions with real arguments, 7 will be
restricted to be a real constant. There is no
loss in generality if T'is required to be positive
and we shall so restrict it. Two periodic
functions are shown in Fig. 1-6. Figure 1-6a
depicts a triangular wave while Fig. 1-6b
illustrates a sine wave. In each case the period
is T seconds. That is, the waveform repeats
every T seconds.

The frequency of a waveform is the number
of times per second that the waveform repeats.
The frequency is equal to the reciprocal of the

Properties of Signals =)

period. That is,

f=1yr

(1-11)
The formula for the curve of Fig. 1-6b is

f(t) = sin wt (1-12)
where o is called the angular frequency and
is given by

w=2nf (1-13)

Discrete Signals

In Section 1-1 we mentioned that some analog
signals could consist of a sequence of samples.
Figure 1-7 illustrates a sampled sinusoidal
signal. The sinusoid is drawn for illustrative
purposes and is not a part of the actual signal.
The heavy vertical lines capped by disks
represent the samples. The vertical position
of the disk indicates the numerical value of
the sample. The actual sampled signal can
take on different forms. For instance, short
pulses each of whose height is equal to the
height of the corresponding sample could be

f(nT)
f(n)
—7T -6T -2T-T 3,T AT )
-4T -37\ 0T 2T 6T 1T
FIGURE 1-7. A sampled periodic signal. The large

dots represent the values of the samples.

t
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f

=TT -6T -5T =F

1 U

FIGURE 1-8.  Another form of a sampled periodic
signal; the waveform depends on the starting time of
the sampling.

4T ST

0T 2T

transmitted. In this case the actual signal
would appear essentially as the diagram of
Fig. 1-7 with the sinusoid and the disks
omitted. Sampled signals are also called
discrete signals.

Another form of discrete signal does not
change value between sampling times. Instead
the value of the signal remains constant at the
last sampled value. For the sinusoid of Fig.
1-7, the discrete signal would be as shown in
Fig. 1-8. These signals are not continuous; but
they are analog signals. The signal level
directly corresponds to a level in the sampled
signal. Note that there are other forms of
sampled analog signals. In one such sampling
scheme, the width of the pulses corresponds
to the level of the original signal.

Consider Fig. 1-7. The signal is sampled at
times

t=0,+T, +£27,... (1-14)

T'is called the sampling time. The vertical axis
islabeled f(nT) to indicate the discrete nature
of the operation. Common usage is somewhat
sloppy concerning the notation used here. The
T is often omitted causing the function to be

6T 1T | ¢

written as f(n). Note that, according to
mathematical usage, if f(t) is a function of the
variable ¢, then f(n) is the same function with
t simply replaced by n. This is not what is
meant by the commonly used notation of
sampled signals where f(t) and f(n) are two
different entities; f(¢) is the function that is
defined for all time and f(n) represents the
function that is defined only at the sample
times. This type of notation can be confusing.
However, in most instances the usage clarifies
the meaning. Note that, according to the
notation of sampled signals, f(n) and f(nT)
represent the same functions, but this violates
common usage. When necessary, to avoid
ambiguity, we shall include suitable explana-
tory material in the remainder of the book.

Note that we have labeled the axis of Fig.
1-8 as f(t). This signal is defined for all values
of time (except possibly at the discontinuities)
and is expressed as a function of time. Note
that

f@O# —f(—1) (1-15)
even though the sinusoid from which the
samples are derived is itself odd. Figure 1-8
is not odd. If, however, the start of the
sampling time were shifted by — 7/2 seconds,
so that the sample interval containing the
origin was symmetric about the origin, then
the sampled signal would be odd as well. It
should be noted that the form of sampled
signals changes if the sampling times are
changed. For example, the sampled signal of
Fig. 1-8 would be odd if the start of sampling
were shifted by — 7/2 seconds.

The previous discussion of periodic func-
tions can be applied to discrete signals as well.
Note that the signal of Fig. 1-8 is periodic
and that its period is the same as that of the
original sinusoid. This need not be the case. If
the sample interval were unrelated to the
period of the sinusoid, then the sampled signal
would not be periodic. Specifically, if a
periodic signal is sampled and the ratio of the
sampling time to the period is not a rational
number (ie., it cannot be expressed as the
ratio of two integers), then the sampled signal



will not be periodic. Note also that the period
of the sampled signal can be different from
the period of the signal being sampled. The
comments that we make about periodicity
apply to any type of sampled signal. For
instance, the sampled signal of Fig. 1-7 is
periodic. Of course if the signal is not periodic,
the sampled signal will not, in general, be
periodic.

We have considered discrete analog signals.
If the values of the samples are converted into
numbers and these numbers are transmitted,
then a digital signal results.

1-3. COMMON SIGNALS

This section introduces several signals fre-
quently used to test systems or as an aid in
mathematical analysis.

Unit-step Function

The unit-step function was introduced in
Section 1-1 and is illustrated in Fig. 1-1b. To
review, the unit step is written as u(t) and
defined as

u®)=1 t>0 (1-16a)
uit)=0 t<0 (1-16b)
u®)=% t=0 (1-16¢)

Previously we did not define the value of u(t)
at the point of its discontinuity, that is at
t = 0. It is common to define this value as 3.
We shall see why it is reasonable to do this
subsequently. For many applications, any
finite value could be used for the value of u(0)
without changing the results of any calcula-
tions. The unit-step function is used to test
systems and we shall discuss this use sub-
sequently. The unit-step function is also used
mathematically to establish signals that are 0
for t <O.

Sinusoid

Another commonly encountered signal is the
sinusoid. A simple sinusoidal signal is the sine
wave, which we have illustrated in Fig. 1-6b.

Common Signals 7

Another form of sinusoidal function is the
cosine which is illustrated in Fig. 1-9a. The
equation for this waveform is
f(t) = A cos wt 1-17)
Note that 4 is the maximum value of f(z).
Figure 1-9b illustrates a signal which is a
cosine wave for t > 0, but which is O for ¢t < 0.
The equation for this curve is
f(t) = Au(t) cos wt (1-18)
Notice how the unit-step function has been
used to set f(t) equal to O for values of t < 0.
The sine and cosine waveforms are very
similar and they shall be related later in this
section. Subsequently, we will demonstrate

that sines and cosines can be used to express
many arbitrary functions of time.

Damped Sinusoid

The response of most practical systems is
in the form of damped functions of
time. Commonly, these are simple decaying

f0)

A

—A -

(a)

FIGURE 1-9.  (a) The function A4 cos wt. (Continued)



