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PREFACE

CAD, CAM, CAE are the areas which form the very basis of modern-day
engineering practice and the Finite Element Method is the analytical
backbone of these areas. The phenomenal growth which the last few decades
have seen in the areas of numerical modelling using Finite and Boundary
Element methods is due to the importance of these methods to virtually
all the engineering disciplines as well as science. Software packages of all
hue and sizes are available not only for Finite Element analysis but for
Boundary Element analysis also. Undoubtedly, these have brought the
potentials of a complex but very strong technique to the doorstep of the
design engineer. Software producers sometimes claim that design engineers
can use these packages with only a cursory understanding of the subject.
This is true for some simple design areas of elastic stress analysis. The
moment attempts are made to solve more involved problems of
manufacturing or thermal or flow analysis, the user feels handicapped
due to the limited information supplied in software manuals and his
general lack of understanding of the basics of the subject.

Finite and Boundary Element methods now constitute important subjects
in senior under-graduate and post-graduate curricula of various
universities. Although a number of books deal with these topics, the author
has found them either too complex or too elementary to cater to the
requirements of either students or practising engineers.

At one extreme there are books which, like an encyclopaedia, cover a
vast spectrum of applications of FEM with brief but very specialized
treatment of each such application, requiring very advanced knowledge
of the engineering field to which the application belongs. At the other
extreme there are baoks which deal with specific applications to a particular
engineering branch, such as Civil Engineering, or a particular topic, such
as fluid mechanics, or which take a superficial look at the subject and deal
mostly with computer codes of FEM and its implementation. These fall
short of the requirements of general designers and students in several
ways.

Students of engineering seeking to learn FEM find the first category of
books extremely difficult to follow while the second category does not
give sufficient insight into the subject if it deals with the provisions of the
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software package only. With engineering curricula varying widely from
university to university and from one country to another and emphasis
on coverage of the subject being highly dependent on the teacher, the
student taking up FEM and BEM are generally not well prepared in subjects
deemed prerequisites. They cannot follow the advanced research-oriented
texts of the first category of books. Even practising engineers have to
brush up their knowledge of the basics of such subjects as theory of elasticity,
plasticity, fluid mechanics, heat transfer etc., in order to come to grips
with application of numerical techniques, such as FEM and BEM in their
areas. The author’s experience in teaching the subject has been that students
as a rule require ‘freshening’ in the basics of the prerequisite subjects.

This book has been written precisely for that category of readers who
need a thorough and detailed coverage of essential features of basic subjects
before embarking on numerical implementation in these areas. Clarity
and completeness of treatment are the main objectives of the book so that
asolid and wide-ranging foundation of the subject is built first. Proceeding
from this stage the student will find himself well prepared to take on the
latest research-oriented texts or research papers, and the practising engineer
sufficiently prepared to tackle advanced applications of FEM and BEM in
his field of interest using the software package available with him.

The organization of the book is such that it gradually builds up the
subject starting from simple topics and application areas, leading into
more involved and complex topics which represent the true practical
application areas of these techniques. The classical application of FEM to
elastic stress analysis is discussed first and basic concepts of the elemental
stiffness matrix, its assembly and solution procedure are explained. The
technique of potential energy minimization is introduced and then
variational approach and weighted residue techniques are explained,
leading to the formulation of problems of steady and unsteady-state heat
flow (potential problems). The theory of bending of beams and plates is
introduced before taking up FEM formulation for plate and shell elements.
The more complex non-linear, curved and isoparametric elements are
then discussed in detail and the procedure of numerical integration using
the Gauss quadrature formulas is elaborated in depth. A chapter on various
types of non-linearity follows. It deals with topics, such as temperature
dependence of properties, plasticity and methods, such as direct iteration
and the Newton-Raphson approach. The concept of tangent matrix is
thoroughly explained. An important area covered in this book, generally
not found in books on FEM, is the FEM formulation for problems of fluid
flow leading to discussion of viscoplastic formulation for application in
metal forming. The next two chapters deal with the boundary element
method, a sister technique of FEM that is fast becoming a very popular
tool of numerical analysis. This is another unique feature of this book.
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The author feels that treatment of the boundary element method along
with the finite element method not only makes discussion of techniques
of numerical modelling complete, but also places the reader in an
advantageous position in understanding and appreciating the research
work being pursued and applications being tackled using BEM. The two
chapters on this topic deal first with the fundamental concepts and then
with formulation of potential problems (heat flow etc.) and problems of
elastic stress analysis. The uncommon features of the mathematics associated
with BEM are fully explained and wherever necessary a separate appendix
has been added for clarity.

Although emphasis in the book is on fundamentals, important research
topics are not left out. There is strong interest among researchers in finding
ways and means of improving the reliability of finite and boundary element
analyses, and in providing speedy solutions through use of automatic
mesh generators and faster computer algorithms so that these methods
can become truly effective tools in computer-aided engineering (CAE). A
full chapter is devoted to the topics of automatic mesh generation, adaptive
mesh refinement strategies for providing solutions with controlled level
of error and faster matrix equation solvers, such as frontal solver, which
can speedily tackle the realistic problems involving tens of thousands of
nodes. These strategies can even be implemented on present-day powerful
PCs.

Since the book mainly deals with fundamentals, only essential references
are incorporated at the end of each chapter as additional sources relevent
to the topic discussed.

The book also includes a working computer code on application of
FEM basically as a tutorial program, which will help readers to understand
the methodology adopted in writing such programs. It can also be used
for solving simple stress analysis problems. It is hoped that the book will
serve the needs of students and practising engineers who require a clear
and complete understanding of the fundamentals and who also desire an
exposure to the major directions of current research in this field.
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Vector

Transpose of matrix [A]

Product of matrices [A] and [B]

Coefficients in the expression for linear shape
function for i-th node (N;)

Strain-displacement matrix

Specific heat

Elasticity (stress-strain) matrix

Displacement vector at any point within an
element

Nodal displacement vector at i-th node
Elemental displacement vector, consisting of all
nodal displacement vectors for an element
Coefficient of elasticity

Unit vectors in x;, x;, x5 directions

Axial force in a rod element

Functionals of function T, T,, Ty or u, v, du/ox etc
Load vectors corresponding to internal heat
generation, Q and surface convection

Load vectors due to initial strain, distributed load,
body force and initial stress respectively

Shear modulus

Elemental conductance matrix and matrix
corresponding to surface convection respectively
Unit vectors in axial directions x, y, z

Thermal conductivity

Stiffness matrix

Length of rod element

Direction cosines of normal to surface
Direction cosines of normal to exterior surface
for axi-symmetric case
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Minor of a matrix

Shape function matrix for an element
Individual shape function, related to node i
Shape function for i-th node in time domain
Intensity of uniformly distributed load

Rate of internal heat generation per unit volume
Coefficients related to convective heat transfer
from surface

Overall nodal force vector

External force vector at i-th node

Exterior boundary surface of an element on which
distributed load or convection conditions exist
Nodal temperature

Temperature at a point

Gradients of temperature along Cartesian direction
Elemental temperature vector

Temperature at i-th node at k-th time step

Displacements in axial direction x, Y, z (or
axi-symmetric 7, z) for a point (u is also used to
represent a scalar function, Ch. 3)
Displacement referred to axial directions X1, X9, X3
Nodal displacements in Cartesian as well as (u;,
v;) in cylindrical axi-symmetric coordinates
Elemental volume

Body for per unit volume

Weighting functions

Cartesian coordinates of a point within an element
Cartesian coordinates of i-th node

Shear strain

Area of triangular element

Overall (global) nodal displacement vector
Components of strain tensor

Strain vector

Initial strain vector

Components of 2D strain vector

Poisson ratio

Potential energy of whole system

Strain energy of e-th element

Work done by external forces (component of
potential energy for n-th node, if # is specified)
Density

Stress vector
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NOMENCLATURE xxiii

Initial stress vector
Time, time instants
A scalar function
Vector dot product
Vector cross product

Some coefficients exclusively defined in the context
of plate bending (Sec. 7.11.2)

Factor defined in eq. ( 6.33)

Matrix used in context of bending strain energy
Total displacement vector for i-th node containing
all displacements (and rotations) as applicable in
a particular context

Elemental displacement and rotation vector for

plate bending

Transverse displacement and rotation vector for
node i during plate bending alone

Elemental displacement vector for in-plane

stresses containing displacements uy, vy, 4y, v;....
Function f at different points

Elemental vector due to distributed load of
intensity P per unit area
Elemental load vector due to initial strain (thermal

strain) in case of 2D plane stresses

Shear modulus (also factor for transforming area
integral from Cartesian to natural coordinates)
Jacobian of transformation from one coordinate
system to other

Elemental stiffness matrix for plate bending alone

Elemental stiffness matrix in global coordinate
system
Elemental stiffness matrix for in-plane loading

Submatrices of order 3 x 3 being the components

of elemental plate bending stiffness matrix
Submatrices of order 2 X 2 belonging to elemental
in-plane stiffness matrix (eq. 7.81)

Length of a beam element

Area (or volume) coordinates
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Bending moments about x and y axes

Twisting moment (torque) about x or y axes in
the context of plate bending

Shape functions ‘

Shape function used to define coordinates
(sometimes)

Rotation matrix for global to local transformation
of displacement

Rotational transformation matrix for transforming
complete elemental displacement-cum-rotation
vector from global to local coordinates

Overall nodal load and nodal moment vector in
bending of beam, plates

Displacements along Cartesian axes
Displacements in global Cartesian coordinate
system

Weightages associated with respective functions
(in the context of numerical integration)
Incremental twist along x or y axis during plate
bending

Rotation along the edge ij and normal to it
(in-plane) for triangular plate bending element
Rotations about x and y axes

Natural (local) coordinates

Total elemental potential energy due to bending,

in-plane and thermal strains as well as distributed
load

Total and elemental area for 2D domain
Acceleration in x-direction
Material matrix (eq. 10.32)

Equivalent plastic strain increment

Parameter associated with plastic work
Components of incremental plastic strain
Thermal energy or other type of internal energy
(excluding strain energy) per unit volume
Yield criterion

Component of body force per unit volume (in
x-direction)—same as fp for i = 1

Load vector during n-th iteration where load (such
as convective heat transfer) is dependent on
function (say temperature)
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NOMENCLATURE XXV

Shear modulus (Ch. 9) and scalar potential related
to gravity force (see Sec. 8.5)

Acceleration due to gravity

Water head (H also represents slope of
stress-plastic strain curve in uniaxial tension test)
Suffixes normally indicating coordinate axes
Thermal conductivity (also yield stress in shear—
used in yield criterion)

Thermal conductivity in x, y directions

Partial differential of k,, k, with respect to
temperature

Suffixes normally indicating the nodes in an
element

Tangent matrix after n-th iteration

Elemental tangent matrix

Coefficient related to frictional force (also total
number of elements in domain)

Six component row vector (defined in eq. (10.28))
Total number of nodes

Pressure

Hydrostatic pressure

Vector containing residues in the concerned
equation when n-th iterated value of parameter
{T} is substituted in it

Components of vector {Q"} which represent

residues (Fig. 9.5 or equivalent)
Temperature gradient in x-direction

Elemental contribution equivalent of Q/

Number of elements (at boundary) where traction
is specified

Relaxation factor during iterations

Rotation matrix

Exterior surface of domain and an element
respectively

Component of surface traction at boundary (force/
unit area) in the direction of i-th axis

Traction along and normal to the boundary
Components of traction along boundary surface
in the direction of natural coordinates &, {.
(direction 7 is normal to boundary)
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Time
Rotational transformation matrix
Temperature ati-th node at the end of n-th iteration

Fluid velocities in x, y, z directions. These are the
same as vj, U,, 3 when coordinate axes are taken
as Xy, X3, X3

Components of displacement at a point
Volume of domain and that of element
Component of velocity vector anywhere in the
domain

Net sliding velocity at boundary (of forging)
Components of velocity vector along directions
of natural coordinate for an element

A constant (Sec. 10.2)

i-th component of velocity vector at node p

Velocity gradient (strain rate)

Specified velocities at boundaries

Coordinate along i-th Cartesian axis

Number of nodes in an element
Components of tensor related to kinematic
hardening (eq. 9.44)

Incremental elemental displacement vector
Elemental inelastic strain vector in n-th iteration
Kronecker delta

Error

Nine components of strain tensor

Nine components of strain rate (velocity gradient)
tensor

Strain rate vector

Magnitude of error at i-th node

Equivalent plastic strain rate
Volumetric strain rate

Equivalent (plastic) strain rate for
rigid-viscoplastic material (Sec. 10.3)

Penalty function (also used as second viscosity
coefficient, Secs. 8.2.5, 8.3.1)

Dynamic viscosity (equivalent viscosity in metal
forming)

Coefficient of friction

Kinematic viscosity
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NOMENCLATURE XXVil

Density

Equivalent stress

Normal stresses (equivalent to 011, 02, 033)
Nine components of stress tensor

Deviatoric stress components
Deviatoric stress vector

Yield points at different locations of stress-strain
curve

Shear stresses (equivalent to 013, 023, 031)

A scalar function such that v; = d¢/dx;

Stream function (Sec. 8.6.1)

Rotation about k-th axis

Body force term. In thermal problem it represents
Qla, a = diffusivity

A parameter C and its values at interior source
point p or source point located at boundary, P
Values of C and ¢ for source point located at node
i

Unit vector in the direction of r

Unit vector along outward normal to surface
Energy (error) norm

Total energy norm

Stress (error) norm

Row vectors associated with source point p
First and second kernels (functions of fundamental
solution)

Refers to the direction of outward normal to
boundary

Indicate source and observation points
respectively, located inside the domain
Indicate source and observation points
respectively, located at boundary

Observation point located within an element—‘e’
Distance between source and observation points
Components of traction along i-th axis
Displacement in the i-th axial direction

Displacement, traction and stress values due to

an arbitrary source of unit intensity (force in
m-th axial direction)
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Specified displacement and traction at boundary
Component of displacement or traction in i-th
direction at node k

Displacement norm

Fundamental solution of a potential problem (for
P as source point and Q, observation point)
Weighting functions

Cartesian coordinates of source point P(i, k may
take values 1, 2, 3)

Boundary of domain

Radius of an infinitesimal circle (or sphere) around
source point

Potential gradient normal to boundary
Elemental and global gradient vector

Values of 8 and ¢ specified at boundary

Value of 6 at the end of n-th time step

Elastic constants (Sec. 12.2.2)

Body force per unit volume along axial direction
i

Components of stress tensor

Smoothened stress—supposed to be close to the
exact stress value

Approximate stress value—obtained from FE
analysis

Time and time step

Potential (for example, temperature)

Value of potential ¢ at interior source point, p, or
at source point P located at boundary
Elemental and global ¢ vectors (global vector
includes ¢ for all nodes)

Values of ¢ at the end of n-th time step
Domain of analysis (object under analysis)



