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PREFACE

This text is a revised version, in English, of the lecture notes of
a course on Control Theory given at the « Scuola di Perfezionamento
in Matematica dell’Universita di Firenze » during the Spring quarter
of 1975.

Both the course and the present publication were sponsored by
the « Istituto Nazionale di Alta Matematica ».

Therefore I wish to express my gratitude to Directors of the
«Scuola», Prof. G. Talenti, and of the « Istituto », Prof. G. Cimmino,
whose joint invitation and encouragement are at the origin of this book.

While preparing it, I was assisted with valuable advices and cri-
ticisms by my former pupils, Dr. G. Anichini, Dr. A. Bacciotti and
Dr. L. Pandolfi.

Prof. G. S. Goodman gave a helping hand in revising the Eng-
lish text.

This book is dedicated to Giovanni Sansone, whose daily presence
in the life of the Istituto Matematico Ulisse Dini is a constant stimulus
to all the mathematical community.

RoBERTO CONTI

Firenze, December 31, 1975
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INTRODUCTORY NOTES

A student with a good preparation in advanced calculus and some
knowledge of the basic facts of linear algebra, general topology, func-
tional analysis and integration theory, should find little or no diffi-
culty in reading this book. However, for the reader’s convenience,
a short list of essential reference texts is indicated at the end of
these notes.

A certain number of function spaces will be considered.

These functions are all either real valued, or vector valued, or
matrix valued, and they all depend on a real variable ¢ ranging in
some interval 4.

We shall always denote by:

c(4) the space of continuous functions,
AC,,(4) the space of locally absolutely continuous functions,

0@(4) the space of functions having a continuous ¢-th derivative
(Cod)= C(4)),

0™(A) the space of functions having derivatives of arbitrary order,
Co(A4) the space of functions which admit a Taylor series expansion,

2(4) the space of measurable functions such that |f|* is locally
Lebesgue integrable for some p>1,

Li¥(A)  the space of measurable functions which are locally essen-
tially bounded.

When A4 is a compact interval, we shall define norms in C(4),
L2(A), L (A) as follows

flo = sup {f)|: te 4},
flzr = ([If0Ieat)™,  1<p,

|flz== ess sup {|f(t)|: te 4} .
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Finally, when 4 is of the type [z, w[, bounded or not, we shall
denote by .

L? the subspace of fe L (4) for which
o T
[rerac=1im [10pa
T—o

is finite, if p>1, or by

L7, the subspace of measurable functions which are essentially
bounded on 4. Correspondingly,

flzz = (ﬁf(t)lpdt)w, p>1,

|fl2 = esssup {|f(1)]: te[r, o]} .
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PART 1

LINEAR DIFFERENTIAL EQUATIONS

1. Linear differential equations.

1.1 One of the simplest differential equations is represented by
(1.1.1) T—ar=20,
where a€R is given, z: t—>x(t), a real function of e R, is the un-
known and £ = dxz/dt is its derivative.

Equation (1.1.1) is a scalar linear differential equation (LDE).
A solution of (1.1.1) is any « such that

(1.1.2) do(t)/dt —ax(t)=0, teR.

Let « be a solution of (1.1.1). From (1.1.2) we see that € C*(R).
Given any compact interval 4 cR, we have |z(t)|<vy4, t € 4, for some
y4>0, and (1.1.2) gives

|d*2(t)/dt*| <|al*y,, ted, (k=1,2,..),
so that ze C@(A4). Since A4 is arbitrary, e C@(R), i.e.,

oty =3 “‘:fe)(t—o)k, t,0€R.
k :

=0

From (1.1.2) again we have

x®(0) = a*x(0), (k=1,2,...),
and finally
(1.1.3) x(t) = exp (a(t—0))z(0), ¢,60€R.
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Conversely, differentiating (1.1.3) we have (1.1.2), so that we have:

THEOREM 1.1.1: The solutions of (1.1.1) are represented by (1.1.3). O

1.2 Let us now denote by a:t+>a(t) a given real function of ¢
defined on an open interval

J=Jg, o[, —oo<a<w<+ oo,
and let ae 0©(J). Then (1.1.1) is a particular case of the scalar LDE
(1.2.1) Z—at)e=20

corresponding to J =R, a constant. A solution of (1.2.1) is any 2
such that

(1.2.2) dz(t)/dt —a(t)x(t)=0 ted.
Therefore, if « is a solution of (1.2.1), it follows that z e CM(J).

When a is a constant we can write
t

exp (a(t —0)) = exp (fa ds)

6
which suggests the following extension of Theorem 1.1.1:
THEOREM 1.2.1: The solutions of (1.2.1) are represented by

t
(1.2.3) 2(t) = exp (ja(s)ds)m(e) . t0ed.

[}

Proor: Let # be a solution. Then from (1.2.2)

t

d(w(t) exp (—fa(s) ds))/dt —0, t0ed,
0

and (1.2.3) follows.
Conversely, (1.2.3) gives (1.2.2) by differentiation. 0O

1.3 The assumption ae C©(J) is not always met in applications.
A more suitable assumption is, instead, a € LL.(J). In this case z
is a (Caratheodory) solution of (1.2.1) if z € AC,(J) and (1.2.2) is
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satisfied almost everywhere in J, i.e.,
(1.3.1) dz(t)/dt—a(t) 2(t)=0, a.e.ted.

A solution is still represented by (1.2.3), where the integral is
Lebesgue instead of Riemann.
To see the difference between the two definitions, consider

ExXAMPLE 1.3.1: Let a be defined by a(t) = 2-'[t|~}, t#0. Then,
according to the first definition (Sec. 1.2), we have J = ]— oo, 0[, or
J =10, 4 oo[, and the solutions, represented by

(1.3.2) z(t)= exp (|t|*)e, e¢= constant,

are defined separately for t< 0 and ¢ > 0. According to the new
definition, we have J =R and (1.3.2) represents solutions defined
for teR. O

1.4 Frequent use will be made in the sequel of the so-called
Gronwall lemma, i.e., of

THEOREM 1.4.1: Let a€ Ll (J), a(t)>0 and let ue CO(J). If for
some ceR we have

t

(1.4.1) ut)< |a(s)u(s)ds + ¢, o<t,
]
then
t
(1.4.2) u(t)< e exp Ua(s) ds), O<t.
6
If
(‘]
(1.4.3) u(t)< |a(s)u(s)ds + ¢, t<0,
t
then
0
(1.4.4) u(t) < c exp fa(s) ds , t<0.
¢
PrOOF: Put

13

fa(s)u(s) ds = o(t) .
']




