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PREFACE TO THE ENGLISH TRANSLATION

This translation, whose publication has unfortunately been somewhat
delayed, follows literally the text of the German edition (published in
1955) apart from a few minor alterations one of which, in Chapter VI1I
§ 5, is concerned with the “explicit spin representation” of the
rotation group, following H. FREUDENTHAL [1956]; this has given,
for the first time, a basis for the numerical calculation of these impor-
tant representations. Other changes have been made in the biblic-
graphy. Some titles published since 1955 have been included, particu-
larly books on the applications of representation theory in physics. In
addition the quoted German textbooks on algebra and group theory
have been replaced by works in the Enghsh language.

I must cordially thank Messrs. P. G. Murphy, J. Mayer-Kalkschm1dt
and P. Carr, who have all taken great pains with the tra.nslatlon I must
also thank the North-Holland Publishing Company, at whose ‘tequest
this translation is published, who have co-operated energetically in
overcoming the difficulties which have occurred.

Giessen, October 1962 - H. BOERNER



PREFACE:TO THE GERMAN EDITION -

The theory of group representations is one of the best examples of
interaction between physics and pure mathematics. A few years before
the turn of the century the algebraist G. FROBENIUS introduced group
characters and the concept of representation. Through a decade nearly,
every volume of the Berliner Sitzungsberichte contained one or other
of the beautiful papers of FroBEN1US and I. ScHUR on this subject.
Meanwhile, in the new century and in the same Berlin, the quantum
theory of radiation appeared. But no one guessed that the two theories
were to become so intimately related a quarter of a century later, This
happened in Gottingen, where the BorN-HEISENBERG quantum me-
chanics originated, in the immediate spiritual and physical neigh-
bourhood of EMmy NOETHER's circle of algebraists. The special, I must
say aesthetic, beauty of this relationship lies in the fact that it concerns
the basic symmetries of atomic mechanics. This, with the help of
FROBENIUS's concepts, made it possible to understand many of the
atom’s secrets with surprising ease.

Until now, special books on representation theory have appeared
only in English. In Germany, apart from some chapters in textbooks of
algebra and groups theory, there are only those beautiful books on
representation theory and physics together written about 1930 by great
mathematicians as H. WEvYL and VAN DER WAERDEN.

The contents of this book are purely mathematical; the subject-
matter and method of presentation, however, are designed to satisfy
the requirements of physicists. Since the book by VAN DER WAERDEN
[1932], which has come out in the same “yellow collection” of the
SPRINGER Verlag, deals with applications to physics, discussion of
applications was omitted completely ; the mathematical contents could
thus be made more comprehensive and set out in more detail, in order
to make it more accessible to the non-specialist. At the same time an
attempt was made to atrange the subject-matter in such a way that a
reader interested in any special topic need not read any more than is
necessary. In particular, the lines preceding the first paragraph in each
chapter are intended to serve this end. Beyond the usual material of
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elementary lecture courses, no previous knowledge is assumed. In fact,
in the first two chapters the whole of the theories of matrices and of
groups are suminarized; where proofs are incomplete reference is made
to suitable textbooks.

The principal concern of the book is to give the representations and
characters of a number of the most important groups. Only that part
of the general theory which is needed here is developed. It will be based
on the field of complex numbers or an algebraically closed field. This
is in conformity with the nature of the applications. It also has the
result that the set of statements which one obtains constitute a beauti-
fully simple and well-rounded theory. ‘

Thus, there has been left out of consideration the theory of modular
representations—basic field of prime characteristic—and also the
question about the behaviour of the representations for an extension
of the field as well as the connection with invariant theory and the
applications to pure group theory. -

In part the individual chapters differ widely from one another in
their methods; after all, it is desirable for the reader to become
acquainted with many methods for obtaining the representationst.
The theory of the group ring is worked out completely for finite groups,
obtaining the system of representations; thus the method first pointed
out by E. NoETHER is used. If one has already proved complete
reducibility, this method is so simple that nothing excessive is expected
of the physicist reader. Other than the concept of an algebra—which
has already a place for itself in physics—only that of an ideal is used.
No knowledge of either is assumed.

As a concrete example of the theory of the group ring the representa-
tion theory of the symmetric group will be presented.

The theory of characters will be developed according to SCHUR—a
method which can be carried over directly to compact continuous
groups. Here the integral over the group is used. Differential calcula-
tions—i.e. the theory of the infinitesimal ring—are also discussed. With
~ assumptions on differentiability, which are satisfied in all the cases
considered here, the two can be dealt with conveniently and briefly. The
omission of matter of greater generality, such as the treatment of more
general continuous groups, seemed advisable, since much on the subject
can be found in the book on almost periodic functions by Maak [1950].

t Other methods are given in LitrLEwoop ([1950], MURNAGHAN [1938c],
H. WryL [1946], Burnsipe [1901].
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. -The theory of the rational infegral representations of the full linear
group and their connection with the representations of the symmetric
group. were discovered by SCHUR and developed exhaustively by
H. Weyt. As the “group-theoretical foundation of tensor calculus”
(WEYL) it has more fundamental than practical importance for physics.
Here also with our restriction to complex numbers everything becomes
clear-and simple; consequently the tensor concept. is used. Having
constructed the rational integral representations it causes only a little
additional labour to obtain all the continuous representations not only
of the full linear group but also of the real, the unimodular and the
unitary groups. The relationship between the full linear and symmetric
groups has practical importance; the formulae which express the
connection between the characters of the two groups give the best
method for the numerical calculation of the characters of the symmetric:
group. From this there also results a summary of the representations
of the alternating group, and their characters are calculated. . .

As for the continuous groups already. mentioned, the representations
of the rotation group for any dimensions are obtained. The usual
rotation group d, is the most important in physics (its representations
can be obtained from VIII, § 6 without studying the general theory).The
LoRrENTZ group is a modification of the rotation group d,; d; and dg
have also been important in physical papers on theories of elementary
particles. A summary of the characters of the rotation group.(and thus
also of the representaticns) is obtained by the method of E. CARTAN,
but with the “global” turn given by STIEFEL—thus without reference
to infinitesimals. For a more general treatment one would need deeper
topological theorems; but since we only consider one concrete example -
everything is elementary, and the characters are obtained in a certain
sense by an exact treatment of the group itself. Also the general theorem
of PETER and WEYL is not necessary. In order to show that actual
representations belong to the calculated characters it is only necessary
to give the “fundamental representations”, with whose help one is led
on to all others. Of these the single-valued ones are the tensor represen-
tations already mentioned. The two-valued ones, the so-called spin
representations, are obtained by two methods. The first is infinitesimal:
because of the great importance in physics, it seemed appropriate to me
to treat in detail the infinitesimal ring of the rotation group and the
CLIFFORD algebra closely associated with it—the latter being just the
general theory of PAULI matrices. The second is the direct global method
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of BRAUER and WEYL, in which also the CLIFFORD algebra is used.

Among the LORENTz groups, the representations of the ‘‘ordinary”,

LoreNTZ group of special relativity theory can be obtained almost as

easily as those of the ordinary rotation group. For a general number of

dimensions, there is treated only as much as can be carried over from
the corresponding rotation groups directly.

In conclusion I must express deep gratitude to Mr. H. WigerANDT,
who has undertaken the labour of reading all the proofs, making many
critical comments. I also thank Herren Th. BIEGLER, G. KRAFFT,
R. KrIEGER and W. VELTE for assistance in the preparation of the
manuscript and diagrams and for numerous suggestions of small im-
provements. Not least I owe my thanks to the publishers and printers,
who have willingly accepted my numerous requests for changes in the
composition of formulae.

Giessen, February 1955 - H. BOERNER
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 CHAPTER I
MATRICES

In this chaptér we shall summarize the properties of vectors and
linear mappings which will be needed later. So far as matters which
are dealt with in elementary courses and textbooks are concerned the
proofs are either omitted or only indicatedt.

§§ 1-3 on linear mapping of vector spaces, on matrices and on
algebras are basic material for the whole book, while the material of
§§ 4-5 (special kinds of matrices, eigenvalues, diagonal form) is needed
mainly in chapters VII and VIIL Of the contents of § 6 the operation
(++) occurs in the whole book ; the Kronecker product is not used until
~ chapter V. §7 contains the concepts fundamental to representation
theory— ‘equivalent’’ and “reducible’’—and Schur s lemma. §8 is.
needed almost solely in chapterV the theorem of§9 only in VIII § 6.

§1.Vectors e,

We select a set of scalars, de_not@d by K, with, the following properties.
Kis a field—i.e., the four operations of arithmetic are applicable in the
usual way. K contains: the domain. of: rational numbers. (it is..of.
characteristic zero™). Finally, we require that K alse contains the roots
of all algebraic equations;whose coefficients lie.in K (it is algebraically
closed”). This condition, though restrictive; is permissible. for those
parts of representation theory which are considered in this book and
it is very convenient. The domain of all complex numbers. satisfies it,
and one may always think-of .this doma.m gspecmlly in connectlon
with physical applications. - , ,
A system of mathematical objects a,. b, ws.is called an n—dzmemzonal
vector space R, over K, .the objects themselves vectors, if two operations
are defined in the system: multiplication af a vector by a scalar from
K and addition of two vectors (whenever.q¢ and &-belong to the system,
so. does Aa + pb)tt. These operatlons must satxsfy the. followmg con-

1 See BIRKHOFF and MAC LANE [1953] vm DER WAFRDEN [1949/50}
"+t Numbers will usually be ‘denoted by Greek letters, algebraic quantities like
vectors, group elements-and matrices by italic Latm letters, sets of numbets or
quantities by bold-face type. .. : : .
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ditions. Addition shall have the same properties as the addition of
numbers—commutative and associative rules, existence of a null-vector
(@ + 0 = a for all vectors a), existence of the opposite vector — g and
the rule for subtraction. In multiplication by a scalar, A2 and aj are
the same vector; one associative and two distributive laws hold:
(Am)a = A(pa), (A + p)a =2a + pa, Aa +b) =Aa + 1b. Also 1.4 =4
for all vectors a. It follows that Az = 0 if and only if 1 is the number'0
or ais the vector zero. Finally a dimension axiom: there exist » linearly
independent vectors, but any # + 1 vectors are linearly dependent.
Here, as usual, we mean that m vectors a 15+, 4y are linearly
dependent when there exist m numbers A, ..., 4,, not all zero, such
thatda, +... + 4,8, =0. ' , Co

Vectors appear here as abstract algebraic objects. Their significance
for geometry and physics lies in their being realized in different ways
by concrete mathematical objects. Thus the intuitive concept of
“directed line segments” in geometrical theorems coincides with the
above definitions (for # = 2 or 3) when addition of line segments and
their multiplication by a number are understood in the usual way. (One
always thinks of vectors as being fastened to the origin; then just one
vector belongs to each point P of the plane or space—namely, that
one whose end point is at P—and conversely.) This realization can
also be used for any # in so far as #-dimensional geometry (in itself
quite an abstract construction) is intuitive and familiar. Since it is only
one of many possible realizations, strict algebraists speak of a ‘K-
module” rather than of a vector space. Nevertheless the name ““vector
space”’ (for the abstract object) enjoys widespread use, since it allows
geometrical intuition in abstract considerations: I use it here for that.
reason. Another representation is given by the solutions of a homo-
geneous linear differential equation or of a system of differential
equations. The whole significance of the development of this book for
physics depends on this representation.

Every system ¢, , . . . e, of » linearly independent vectors forms a
tasis or-coordinate system for R,. If a is any vector, then there follows
from the linear dependence of a, ¢, , . . ., ¢,, together with the linear
independence of the ¢;, that we can write a = aye, + ... -+ a,¢,, and
that this representation is unique. The nuinbers a; are called the com-
ponents of a with respect to the basis ¢,. Az has components A, ,...,Azx,;
a,+ b has components &, + B, ,..., &, + B, if B, , ..., B, are those
of b. It follows from this that every #-dimensional vector space over K-
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is isomorphic to that vector space whose elements are defined as the
n-tuples (a, ,...,a,) for which products with scalars and sums are
understood by the above formulae (i.e., there is a one-to-one corres-
pondence between the two sets such that the sum of vectors maps into
the sum of the image vectors and the product of a vector with a scalar
maps into the product of the image vector with the same scalar).
Thus, from the standpoint of abstract algebra, there is only one
n-dimensional vector space over K.

A linear subspaceis a collection of vectors with the following property:
if a, ber, then Aa <+ ub € r for any scalars 4, u.t The collection of all
linear combinations of m fixed vectors is a linear subspace (one says:
“the vectors span the linear subspace’). Conversely, in every linear
subspace one can find a finite number of vectors which span it. If the
m vectors are linearly independent, then the linear subspace r spanned
by them has the dimension m; i.e., there exist m linearly independent
vectors in r and any m + 1 vectors of r are linearly dependent. If the
vectors are linearly dependent, then the dimension of r is less than m.

k linear subspaces ry , . . ., r, span a linear subspace r consisting of
all sums
’ o a=a +...+a (a;€r) . , (1.1)

- The sum is called dsrect (and one then writes r = r; 4+ ... + r,) when
the decomposition (1.1) of the vectors a e r is unique. For this it is
necessary and sufficient that *‘the decomposition of 0 is unique”, i.e.,
a= 0 always impliesa, =0 (j = 1,..., k); an alternative condition
is that the dimension m of r be the summ, + ... + m, of the dimen-
sions of ry,..., Iy, otherwise it is smaller. For £ = 2 the sumis
direct if and only if r, and r, have no vector in common other than 0.
‘Subspaces whose sum is direct are called linearly independent. A basis
€, ..,¢,is said to be adapted to a linear subspace r (whose dimension
is m) in R, if the first s or the last m basis vectors span the subspace.
One can always augment any and every basis of r to obtain such an
adapted system.

o '§ 2, Linear Mappings. Matrices

A linear transformation of the mn-dimensional vector space is a

mapping of R, into itself which r_na.ps every vector x into another vector
%' such that Ax + py maps into Az’ + uy’. Let a basis ¢, ,..., ¢, be

f The symbol a & r means ““q is an element of r’’ or “a belongs to .
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given; let oy (¢ =1, ..., ») denote the components of the vector ¢;
mapped from ¢, so that ¢; = Y1, ¢, 2,. Then x = &e, + ... + &.e.
must obviously map into &' = &,e] + ... + &,¢,.-On the other hand
%' = &le; + ... + &,e,, where §; are the components of x'. Thus. ...

ZE’ei “ZEkek "‘Z Zek’ X s

i=1 k=1 i=1

“whence, because of the linear independence of the ¢

§i=Y apl. R (2";),

k=1

Thus for a given basis there is a matrix

L TR TA
A=1........ —-{‘_lu}»
aui " ann '

corresponding to each linear transformatlon For (2.1) one also wntes
for shortt

x’=Ax. Lot B - B (2\'2.)

B}

" Asa useful theorem followmg from ‘the a,bove we have e

AL R SR g

THEOREM 2.1. - The columns of a mairix A whzch performs na lmear
mapping consist.of the components of the images of the basis yecters. ..,

To the successive performarice of two linear transformations {«;} ==
A4 and {84} = B —first B, then A — corresponds the matrix product:
x' = A(Bx) = (AB)x yxelds for the elements Vi of C AB i

: L S : . -:‘ : "'
L Ya= Z;.%ﬁfk‘: o ey
The unit matrix Ett which performs.the identity transformation
x' = x has units on the principal diagonal and zeros elsewhere. Its
t Here and in the following—see e.g. eq. (2.7j—the letter # often not only
stands for.the vector (without reference to a particular basis) but also serves
as.an abbreviation for the »-tuple of its components.for the given basis. - -

tt Often the dimension is attached toEasa subscrlpt E, is the r—d.lmensxonal '
unit matrix.
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elements are often denoted by the ‘“‘Kronecker symbol” 8,, (thusé, =

L ¢2n}). A linear transformation is reversible when the equations (2.1)
are uniquely solvable for the &,. As is well-known this is the case if and
only if the determinant det A4 is not zero; the matrix 4 is then called
non-singular. The inverse is denoted by A™!; A4 ™' = A4"'4A = E.
This rule permits one to calculate with positive and negative integral
powers of non-singular matrices as with numbers.

A linear mapping of one vector space R, into another S, (we can
have # # m) is performed for given bases by a rectangular matrix A
with m rows and » columns. The image of R, is a linear subspace s of
S, and the set of the ¥ € R, which are mapped onto Ois alinear subspace
r of R,. If we denote the dimension of r by 7, that of s by s, then we have
the relation 7 + s = n, which is fundamental for the theory of systems
of linear equations. We call s the rank of A. The matrix product AB can
also be defined for rectangular matrices when it is arranged that the
row length of A4 is the same as the column length of B. To AB cor-
responds the successive application of two mappings, say from R, into
S, (by B) and from §,, into T, (by A).

Block matrix rules. A decomposition n =17, +#, + ...+ %, 0
the number # into positive integral summands gives a decomposition
of the sequence 1, ..., n into » segments: 1, ..., 5;7m 4 1,...,
n, '+ n,; etc. We denote the p-th segment by (p). By dividing up the
ToWs and columns of a matrix 4 in such a way one can write 4 as a

“block matrix” ;

f(- '-“-----"f")‘ Ao = o} (€ () hE(@).

The blocks along the pnncxpal dJagonal are square; the others are in
general rectangular. The followmg useful “block rule”’ holds for multl-
plication of such miatrices:

If C = AB, then

'C'¢ = Z Aﬂ Bn ; S o (2.4)

=1

i.e., one multlphes block matnces as if the blocks were numbers. It is
easy to, convince oneself that it is always possible to construct tlie
products of recta.ngula.r matrices on the right hand side. Then
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AprBw = { Z “ijﬁjk} (1' € (P): ke (0’))
_ . Ue(r) -

and-

S ApBu={ 3, aubn) = Co (el ke ().

Chcmge of basis in the vector space. 1f one moves from one basis
€y, ...,e,of the vector space to another, consisting of  linearly in-
dependent vectors fy , . ...; f,, then for any vector

;lv=§131 + .. +E,,_3,.= "hfi +... 4+ ﬂufn , (25)

7, are the components of the vector in thevnew_ basis. Let py (z'r=
1,...,n) be the components of f; in the old basis of the ¢;; f, =
Y 7«1 ¢ipu- Then from (2.5)

Zéiei = theipmm,

so that
&= z Pix Nk - (2.6)

! k=1
One also writes for short+
S . x= Ry. (2.7)

There is an analogue to theorem 2.1:

THEOREM 2.2. In the matrix of a coordinate transformation the co-
lumns contain the components (in the old system) of the new basis vectors.

A coordinate transformation must be reversible; thus the matrix R
must be non-singular. The reverse transformation gives y = R™'x.

How does the matrix of the linear transformation given by formula
(2.1) or (2.2) appear in the new coordinates? Since x’ = Ry’ holds also
for the image, we have Ry’ = ARy or y' = R™'4Ry. Thus one must
replace the matrix 4 by R™'4R, or, as one also says, iransform it
with R. ‘

If r is a linear subspace of R,, then there always exists a linear trans-

t Note the different meanings of formulae (2.2) and (2.7). There the left and
right sides stand for different vectors—# and its image #'. Here the left and
right sides stand for the same vector in different coordinate systems. Formulae
(2.2) and (2.7) are to be understood merely as abbreviations for {2.1) and (2.6},
respectively. e T R . :
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formation of R, into itself—called the projection of the vector space
onto the subspace—with the following properties: every vector of R,
maps into a vector of r, but the vectors of r are fixed:

1. Ax liesin r (any x),
(2:8)
2 Ax=2x (x€r). :

For if one has adapted the basis to r so that the first » ba.315 vectors
span r, then obviously the mapping

=& (=1,...,7, &=0 @G=r+1,...,m),

with the matrix 1~ -

0 0

i =

is a projection of R, onto r. If we denote by r’ the subspace spanned
by the remaining basis vectors with numbers r 4+ 1, , ; then r
maps into the null element. One speaks of “‘projection along r' onto r’
From (2.8) follows: if one applies the mapping A4 twice in succession
then the second transformation leaves everything unchanged. Thus
A* = A. A quantity with this property is called idempotent; all higher
powers are then equal to A. The above special matrix is obwously
idempotent.

The converse of the previous paragraph is also true: every idempotent
malrix A performs a projection. Let the rank of A be 7. If » = » then
A = E, as is seen immediately on multiplying A> = A on the right
with A7*. If » < » then R, is mapped onto a subspace r of  dimensions
whose vectors remain fixed because 4% ='4. The vectors which are
mapped into the null element constitute a subspace of n —7 di-
mensions. ‘We now prove R, = r + r’. For any x put 4x = x; and
x—x% =%, Thenx, erandx, er': Ax, = Ax — Ax;, = %, — %, = 0.
We do not need to show that the decompasition is unique, since we
already know that the dimensions of r and r* add up to ».



