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Foreword

Assessment of reliability of an equipment is of paramount importance
in the context of modern technology and its future developments. Special
statistical methods have been developed for this purpose during the last
few decades, but there has been no comprehensive and up-to-date account
of the various techniques to promote their application and to stimulate
further research. Professor S.K. Sinha has done a valuable service in
writing a book bringing together all the available results and presenting
them in the logical framework of statistical estimation and testing of
hypotheses.

“Reliability and Life Testing’’ by Professor Sinha is a welcome contri-
bution in many ways. It is based on the author’s own outstanding
contributions in this special area of applied statistics and experience in
giving courses on this subject at a number of Universities throughout the
world. It discusses the basic theory and gives detailed proofs of the
various results, which make it an ideal text book for students. It uses
live data in illustrating the statistical techniques, which makes it a
valuable guide for practicing engineers. It reviews current developments
in life testing and reliability estimation and lists the latest references,
which are of value to research scholars. An attractive feature of the
book is the extensive discussion of Bayesian techniques in reliability
estimation.

The present volume is a revised and enlarged version of the author’s
earlier book. “Life Testing and Reliability Estimation” co-authored
with Professor B.K. Kale. Judging from the success of the previous
book, I am sure the revised edition with several additional attractive
features will be well received by students, research scholars, statistical
consultants and practicing engineers.

C.R. Rao
Pittsburgh

August 1, 1985



Preface

This book is a thoroughly revised and a coansiderably extended version
of my earlier work “Life Testing and Reliability Estimation” (Wiley
Eastern/Halsted Press, 1980) co-authored with Professor B.K. Kale,
University of Poona, India.

The present edition includes several new sections, examples and exer-
cises, two new chapters, an additional appendix and extensive discus-
sions on newer statistical techniques. The project was motivated by the
increasing interests of Academics and Professionals working with life
length distributions and the need for a comprehensive and consolidated
text on the basics of reliability estimation/testing. The book is intended
for honours and first year graduate students of Statistics, Mathematics
and Engineering Sciences. Practising Reliability Engineers, Researchers,
Instructors and Consultant Statisticians will also find this publication a
very helpful guide.

The text has nine chapters. Chapters 1-5 deal with a thorough analy-
sis of the point and interval estimation (Classical) for the well-known
life distributions based on complete/censored samples, mixture distribu-
tions, competing risks and tests of hypotheses. Chapters 6, 7 and 8 cover
Bayesian methods and Chapter 9 briefly discusses reliability estimation
and reliability bounds for series and parallel systems—Classical and
Bayesian. The Classical methods of estimation considered are:
(i) Maximum Likelihood (MLE), (ii) Uniformly Minimum Variance Un-
biased (UMVUE), (iii) Method of Moments, (iv) Linear Combinations
of Selected Order Statistics and (v) Regression Approach. A number of
illustrative examples have been worked out at the end of each section
and a set of exercises given at the end of each chapter.

Three appendices review the results used in the text. Appendix I deals
with the properties of Gamma and Beta distributions and distributions
of order statistics, Appendix IL covers the Theory of Estimation and
Tests of Hypotheses and Appendix III, which is particularly interesting,
treats Bayesian Approximation. The general approach is introductory
but rigorous, with an excellent list of references ranging from 1927 to
1985 which may serve to stimulate readers for further studies along this
line.

The major part of this project was completed while I was visiting the
Institute of Mathematical Statistics, University of Umeg, Sweden, and
Indian Statistical Institute, Calcutta during the spring of 1985. I am
grateful to Professor Gunnar Kulldorff, the members of the Institute



X Preface

and Professor Ashok Maitra, the Director of Indian Statistical Institute
for their warm hospitality, the excellent Library, Office and Secretarial
facilities and their overall interest in my work. I offer grateful acknow-
ledgement to Professor B.K. Kale for his encouragement, assistance
and advice never to be forgotten and sincere thanks to Dr. Yoshisada
Shibata for the Japanese translation of the Sinha-Kale edition.

I am indebted to Ingrid Westerberg, Christina Karlberg and Christina
Holmstrom, University of Umea, Sharon Henderson and Mabel Davies,
University of Manitoba and Eva Lowen, Winnipzg, Manitoba, for their
patience, care and skill in typing the manuscript, Professor H.L. Harter for
permission to use the data in Exercises 2.14 and 2.15, Mr. Jeffrey Sloan
and Mr. William Mortimer for computing assistance and Wiley Eastern
for their interest in this project.

Iowea great debt to my family for their affectionate support through-
out the trying periods of research and writing, without which this publi-
cation would never have been possible.

Winnipeg, Manitoba, S.K. SINHA
Canada
April, 1986
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Introduction

When we buy a transistor radio or a scooter or even a simple product
such as an electric bulb or a battery we expect it to function properly
for a reasonable period of time. When a manufacturer floats a new brand
of light bulb in the market, he would like his customers to have some
information about the average life of his product. Life testing experiments
are designed to measure the average life of the component or to answer
such questions as ‘what is the probability that the item will fail in the
time interval [#,, f, + ¢] given that it was working at time #,’?

In a simple life testing experiment a number of items are subjected to
tests and the data consist of the recorded lives of all or some of theitems.
No matter how efficient the manufacturing process is, one or morefailures
may occur. This failure may be due to:

(i) careless planning, substandard equipment and raw material used,
lack of proper quality control, etc.;

(ii) random or chance causes. Random failures occur quite unpredict-
ably at random intervals and cannot be eliminated by taking
necessary steps at the planning, production or inspection stage;

(iii) wear-out or fatigue, caused by the aging of the item.

Since the item is likely to fail at any time, it is quite customary to
assume that the life of the item is a random variable with a distribution
function F(r) which is the probability that the item fails before time ¢.
Many of the questions raised above can be answered if we know F(¢).
For example, the average life could be defined as the mean of the distri-
bution F(f) while the probability ‘of failure-free operation between
[#s o + t1, given that the item was ‘alive’ or working at time 7, is given by

F(t,+ t)_F(to) :
1—F(t) °

Another very important function associated with the failure distribution
F(t)is the hazard rate denoted by (). Consider the probability of failure-
free operation within the interval [, ¢ 4 /], where 4 is infinitesimal. If f{?)
denotes the probability density function (p.d.f.) corresponding to F{(),
then the hazard rate or the ‘instantaneous failure rate’ is given by
Ft+h—Ft) A

K1 —F(t)} — 1—F@¢)

The function (¢) is also known as the force of mortality in actuarial
and life contingency problems.

w(?) = lim
B0
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Let R(t)=1— F(t) denote the probability of failure-free operation
until time £, or survival until time £. Then it is quite evident that the
stochastic behaviour of the failure time can be studied through either of
the four functions f{(¢), F(t), R(t) or p(t). Note that

R(t)=1— F(t), f(t) = dF(t)/dt and p(t) = — d/dt log {1 — F(t)}.
From simple integration it follows that

Fit)y=1 — exp { - J; w(w) dw}and J(t) =u(®) exp{ - I: w(w) dw}.

We list below several common forms of f(¢) that are generally assumed
in life testing experiments and reliability problems. The simplest form is
the exponential distribution with

1 t
f(tld)—; €xXp (—;),t> 0;0'> 0

for which F(t) = 1 — exp (—t/o), R(t) = exp (—1/c), p(t) = 1/a.

Davis (1952) examined different types of data and the exponential dis-
tribution appears to fit most of the situations quite well. Indeed Epstein
(1958) remarks that the exponential distribution plays as important a
role in life testing experiments as the part played by the normal distri-
bution in agricultural experiments on effects of different treatments on
the yield. We will consider the exponential distribution in detail in
Chapter 1. Different sampling schemes such as censoring and truncation
will be discussed in this and subsequent chapters.

In Chapter 2 we will introduce more complex forms. First, we consi-
der the gama distribution with p.d.f.

1 t
f(tlcr,p)=m5;,,ﬂ"l eXP(—;), t>0,p>0,6>0

where I'(p) is the well-known gamma function. Note that for p =1, the

gamma distribution reduces to the exponential distribution. For the
gamma distribution,
1 t gp-1 t
F(t) =m) L — exp(——?)dt
and there is no explicit formula (closed expression) for F(z). It may be
noted that F(¢) is the well known incomplete gamma integral and has
been studied extensively. Similarly, there is no simple formula for the
instantaneous failure rate p(¢) although it can be shown that for p > 1,
w(?) is an increasing function of ¢. This implies the ‘aging effect’, i.e.,
the failure rate increases with the time (age) z. This property makes the
gamma distribution applicable to many life testing experiments in which
the ‘aging effect’ is expected. [See Birnbaum and Saunders (1958),
Gupta (1960), Greenwood and Durand (1960), Harter (1969), Kendall
and Stuart (1972).
Next, we will consider the Weibull distribution for which the p.d.f.

f(t | o, k) = (k/s) £+ exp (—¥/c), 2 > 0, k > 0,6 > 0.
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Again note that for £ = 1, the Weibull distribution reduces to the ex-
ponential distribution. We also note that the Weibull distribution arises
in a natural way from the exponential distribution if we ussumethat the
kth power of the failure time has exponential distribution. For the
Weibull distribution we have

& k—1

Ry =1—exp(—2), wiy ="~
Thus, for the Weibull distribution the hazard rate is an increasing
function of time and increases as a power of ¢ for k > 1; [See Weibull
(1939, 1951), Mendenhall and Lehman (1960), Mennon (1963), Cohen
(1965), Harter and Moore (1965), Mann (1968), Lawless (1972), Sinha

(1982, 1984)].

In Chapter 3 we consider the situation where the failure time follows

either the normal or the log-normal distribution. Here the densities are,
for the

(i) normal distribution

St p,0) = \/2— ex p{—(t-m} —0 It o,

—o<pn<o,s>0.
(ii) lognormal distribution

_ —(log t — p)? -
f(tlp"c)_—'tc -Z—eXP{ 252 .t>o,6>0,

—0 < p< ©.

The expressions for p.(f) or F(¢) for these distributions cannot be ob-
tained in a closed form. For the normal we can show that u() is an
increasing function of time and, therefore, the model, implies the aging-
effect.

The lognormal would be an appropriate model when the failure rate is
rather high initially and then decreases as ¢ increases. We refer to papers
by Gupta (1952), Aitchison and Brown (1957), Plackett (1959), Bazovsky
(1961), Larson (1969), Sinha (1980, 1981).

In Chapter 4 we would consider mixture distribution [Mendenhall and
Hader (1958), Swamy and Doss (1961), Sinha (1982)] and competing
risk model (Kalbfleisch and Prentice, 1980).

In Chapter 5 we will discuss the problem of testing hypotheses and
construction of confidence intervals for various life testing models
[Lehman and Scheffe (1950; 1955), Lehman (1959), Mood, Graybill and
Boes (1974), Hogg and Craig (1978)].

In the nextthree chapters we discuss a Bayesian approach to life testing
and reliability estimation.

In Chapter 6 we consider Bayes estimators of the parameters and relia-
bility functions for the exponential, Weibull and normal failure time
distributions. We refer to papers by Bhattacharya (1967), Draper and
Guttman (1972), Pierce (1973), Sinha and Guttman (1976; 1984), How-
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lader and Sinha (1984), and Sinha (1985), which consider some situations
where Bayesian approach is suitable and appropriate.

In Chapter 7 we discuss Bayesian approximations and its application
to reliability estimation for Weibull, normal and Inverse Gaussian failure
distributions. [See Lindley (1980), Sinha (1983; 1984)].

Chapter 8 deals with Credible and Highest-posterior-density intervals
for the parameters and reliability functions of normal, one and two-
parameter exponentials, Weibull and Rayleigh distributions. [See Box
and Tiao (1973); Sinha and Guttman (1976; 1984), Sinha and Howlader
(1983) and Howlader and Sinha (1984)].

Finally in Chapter 9 we briefly discuss the reliability of series and
parallel systems—Classical and Bayesian. [See Lentner and Buchler
(1963), Lieberman and Ross (1971), Sarkar (1971), Draper and Guttman
(1972)].

The book concludes with three appendices. Appendix I outlines the
basic distribution theory and some important results used. Appendix II
covers the basic theory of estimation and Tests of hypotheses. Appendix
III deals with the details with the detailed derivation of Lindley’s (1980)
approximation to the ratio of two integrals which cannot be expressed
in simple/closed form.



CHAPTER 1

Exponential Failure Model

1.1 Introduction

Any inference about the average life is based on the data thatareassumed
to be drawn from a universe or population specified by a distribution
function (d.f.), F(x). Before one approaches the general problem of life
testing, one has to make some assumptions about the underlying F(x) or
its corresponding p.d.f., f(x). In life testing research the simplest and the
most widely exploited model is the one-parameter exponential distribu-
tion with p.d.f.

f(x | ¢) = (1/o) exp (—x/0), x > 0, 0 > 0. €))
Here o is the average or the mean life of the item and it also acts as a
scale parameter.

Exponential distribution plays an important part in life testing pro-
blems as mentioned in the ‘Introduction’. For a situation where the
failure rate appears to be more or less constant, the exponential distri-
bution would be an adequate choice but not all items satisfy the condi-
tion that ‘it does not age’. There are several situations where the failure
rate may be increasing or decreasing and Weibull, gamma or log-normal
would be a more realistic choice. Given the data, perhaps the best one
can do is to apply some transformation which will support the assump-
tion that the transformed observations are exponentially distributed
(Draper and Guttman, 1965), or check the assumption of exponentiality
by some appropriate statistical test (Epstein, 1960). Exponential distri-
bution also occurs in several other contexts, such as the waiting time
problems. Maguire, Pearson and Wynn (1952) studied mine accidents
and showed that time intervals between accidents follow exponential
distribution. Let X be the life of an item under test. The exponential
distribution may be easily derived by using the relationship

Sy =) exp § = [ ) v
A constant failure-rate A yields
J(x | A)= A exp (—Ax), x, A > 0.

There are, however, some other elementary considerations which lead
to an exponential distribution. These considerations may be formally
stated as assumptions:



6 Reliability and Life Testing

(1) The failure of the item in a given interval of time [¢,, #,] on thecon-
dition that the item works until time #, depends only on (#;, —Z,),
the length of the time interval and not on #, the position of the
time interval.

(2) On the condition that the item works until time #,, the probability
that the item will fail in an infinitesimal interval [¢, ¢z + 4] is pro-
portional to % except for higher order.

(3) The probability of failure at # = 0 i.e. the instant the test started is
zero.

Let R)=P(X>1)
= Probability that the item survives for at least time .
In view of the assumptions (1) and (2) we write

R(t+ ) = R(t) (1 — M) + O(h)
where A is a constant.
[R(t+ h) — R@)l/h = — AR(t)+ O(h)/h.
Taking limits as 72— 0 we get a simple differential equation

dR(t)/dt = — AR(t)
or ‘ dldt log R(t) = — A
the solution of which is

R(t) = A exp (—\t)

where A is an arbitrary constant.
From the assumption (3),

RO)=1=A.
Hence
R(t) = exp (—\r) (3]
F(it/A)=1— R(t)=1—exp (—\1)
and S(t/x) = A exp (—1), £, A > 0.

1.2 Some Properties of Exponential Distribution
The exponential distribution has several interesting properties. We men-
tion a few below:

(i) The distribution is ‘forgetful’ or ‘has no memory’. What it means,
however, is that if a unit has survived ¢ hours, then the probability of its
surviving an additional % hours is exactly the same as the probability of
surviving 4 hours of a new item.

Consider the one-parameter exponential density with mean life o, viz.,

f(x ]| 6) = (1/6) exp (—x/a), X, e > 0.

J.Hh—c exp(—c—) dx h
PX=t+h|X=1t)= i % =cxp(—;)=P(X>h).
dx
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(ii)) Suppose n items are under test with replacements and the failure
time distribution is exponential with meanlife o; then the between failure
times are independent and identically distributed as exponential with
mean life o/n. (We will frequently use the terms ‘with or without replace-
ment’ to refer to respective situations where the items that fail ‘are or
are not replaced by similar new items’).

Let X¢;) < X(2)... < X(n) be the ordered failure times of » items under
test and let the failure times be exponentially distributed with mean life
o. The test starts at time X(;) = 0 and the system operates till X;) = x¢)
when the first failure occurs. Suppose the failed item is immediately
replaced by a new item and the system operates till the second failure
occurs at time X, = X(5 and the item failed is immediately replaced.
The process continues till all items fail and let

W, = Xm, Wy = X — X(]_),---, Wn = Xn) _X("—ﬂ'

Now W, is distributed as the first order statistic X(,) in a sample of »
from the exponential p.d.f. (1). Hence the p.d.f. of W, may be written
down as

g(wy | 6) = (n/s) exp (— nwyfs), 0 < w, < © 3)
which implies that W, is exponentially distributed with mean life (o/n).
Since the items that fail are immediately replaced, W,, W,,..., W, are
independent and identically distributed (i.i.d.) as W,. (See Appendix I
for discussion on the distribution of order statistics.)

(iii) If » times are put up to test without replacement and (X(y), X¢z),
..., X(m)) are ordered failure times from an exponential population with
mean life o, then (Z,, Z,,..., Z,) are i.i.d. as

8z | o) = (/o) exp (—z/o), z,6>0
where Z; = (n — i + 1) {Xy — Xg—p}, I =1,2,..,n; X, =0,

Note the difference between (ii) and (iii). Under the ‘with replacement’
plan, the number of items exposed at any time is # and the total time on
the test till the kth failure time Xy is n{Xy) + X — X + Xz — X2
+ ... + X@ — X@-y} = nXxx) whereas, when the failed times are not
replaced, the number of items exposed at X, is 7, at x(y) is (n—1), at x,
it is (n — k), etc., and the total time on the test up to X is nx,, up to
Xeg it is (n — 1){Xe) — X} up to xqx it is ( — & + D){xgy — Xk-p}e

The joint distribution of {X{;), X(g)s-+.» X(m} is given by

n
2 Xay
1

c

},0 <X < X(g) <eo0 < X(n) < O
©)

n!
8(X(1s X(2)s-++3 X(m) | ) = = exp{

Let
Zy = IXy)
zy = (n — D{x) — x(p}
Zg == (n — 2){x@ — X}

ze = (n — k + gy — Xa-ph k =1,2,..,m xq = 0. ©)]



