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FOREWORD TO THE FIRST RUSSIAN EDITION

Physical similarity and dimensional properties play a very impor-
tant part in experiments and calculations in physics and engineering.
The construction of airplanes, ships, dams, and other complicated
engineering structures is based on preliminary, broad investigations,
including the testing of models. Dimensional analysis and similarity
theory determine the conditions under which the model experiments
are to be carried out and the key parameters representing fundamental
effects and modes of operation. In addition, dimensional analysis
and similarity theory when combined with the usual qualitative
analysis of a physical phenomenon can be a fruitful means of inves-
tigation in a number of cases.

Dimensional analysis and the use of models are encountered in the
earliest study of physics in schools and in the initial stages of for-
mulating new problems in research work. Moreover, these theories
are of an extremely simple and elementary character. In spite of
this it is only in recent years that the reasonings of similarity theory
have been widely and consciously used; in hydromechanics, for
example, in the past thirty to forty years.

It is generally acknowledged that the explanation of these theories
in textbooks and in actual teaching practice in colleges and univer-
sities is usually very inadequate; as a rule, these questions are only
treated superficially or in passing. The fundamental concepts, such
as those of dimensional and dimensionless quantities, the question of
the number of basic units of measurement, etc., are not clearly ex-
plained. However, such confused and intuitive representations of the
substance of the dimensions concept are often the origin of mystical
or arcane physical imports attributed to dimensional formulas. In
some cases, this vagueness has led to paradoxes which were a source
of confusion. We shall examine in detail one example of such a
misunderstanding in connection with Rayleigh’s conclusions on heat
emission from a body in fluid flow. Often, relations and mathematical
techniques not related to the substance of the theory are used to
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explain similarity theory. As in every general theory, it is desirable
to construct the dimensional analysis and similarity theory by
using methods and basic hypotheses which are adequate to the sub-
stance of the theory. Such a construction permits the limitations and
possibilities of the theory to be clearly traced. This is necessary
especially in dimensional analysis and similarity theory since they
are regarded from widely different points of view: at one extreme
they are considered to be all-powerful while at the other they are
only expected to give trivial results. Both of these extreme opinions
are incorrect.

However, it should be noted that similarity theory gives the most
useful results when used in combination with general physical as-
sumptions which do not in themselves yield interesting conclusions.
Consequently, to show the range of application more completely, we
consider a whole series of mechanical problems and examplesin
which we combine dimensional methods with other reasonings of a
mechanical and a mathematical nature.

With this in mind, special attention is paid to the problems of
turbulent fluid motion. Similarity methods are the basic techniques
used in turbulence theory, since we still do not have a closed system
of equations in this field which would permit the mechanical problem
to be reduced to a mathematical one. New results are contained in
the section on turbulent fluid motion which supplement and explain
some aspects of turbulence theory. In addition to examples illustrat-
ing the use of methods of similarity and dimensional analysis, we
discuss the formulation of a number of important mechanical prob-
lems some of which are new and hardly worked out.

We dwell in some detail on the analysis of the fundamental equation
of mechanics derived from Newton’s second law. This is of interest
on its own account and also helps to illuminate the usual reasoning
about basic mechanical properties. Our viewpoint on this matter is
not new; however, it differs radically from the treatment given in
certain widely used textbooks on theoretical mechanics.

The number of familiar applications of dimensional analysis and
similarity theory in mechanics is very large; many of them are not
touched upon here. The author hopes that the present book will give
the reader an idea of standard methods and of their possibilities,
which will be of assistance in the selection of new problems and in
the formulation and treatment of new experiments.

A large part of the book does not require any special preparation
by the reader. But in order to understand the material in the second
half of the book, some general knowledge of hydromechanics is
necessary.

Moscow, 1943 L. I. Sedov



FOREWORD TO THE THIRD RUSSIAN EDITION

In recent years, scientific investigations of physical phenomena
have relied more and more on the invariant character of the governing
mathematical and physical laws relative to the choice of units for
measuring the physical variables and scales.

The practical and theoretical power of these methods has been
recognized more and more by scientists contrary to the recently held
opinion that the methods of similarity and dimensional analysis
are of only secondary value.

A certain analogy exists between dimensional analysis and simi-
larity theory and the geometric theory of invariants relative to coor-
dinate transformation, a fundamental theory in modern mathematics
and physics.

-Since the first edition of this book appeared, many new applications
of dimensional analysis and similarity theory have been made to
widely different problems in physics and continuum mechanics,
to certain mathematical problems related to the use of group
theory in solving differential equations [1] and to statistical prob-
lems of sampling and inspection of goods and finished products
[2].

Some corrections and additions to emphasize better the basic ideas
of the theory of similarity and dimensional analysis are introduced
in this edition. One example of this is the discussion of the proof of
the II-theorem. Furthermore, the definition of dynamic or physical
similarity of phenomena has been given in more detail. This new
definition is still not in general use in the similarity literature;
however, from the practical viewpoint, it includes the essential
peculiarities of physically similar processes; moreover, it is con-
venient for direct use and, apparently, satisfies all the needs of differ-
ent applications.

Beyond this, §§ 8-12 in Chapter IV and an entirely new chapter
have been added. The additions to Chapter IV are devoted to certain
problems of explosions and the attenuation of shock waves, besides
a discussion of the general theory of one-dimensional gas motion.
Applications of the theory of one-dimensional unsteady gas motion
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and the methods of dimensional analysis to certain astrophysical
problems are considered in new Chapter V?!).

The theory developed in the additions to Chapter IV and in
Chapter V1) is completely new in its basic approach. The proposed
formulation and solution of the gas dynamics problems illustrate the
applications of dimensional analysis methods to astronomy and
provide a stock of simple simulating ideal motions which can be
used to investigate problems of cosmogony. Many of these results I
obtained in collaboration with my young pupils in the course of the
work of the hydromechanics seminar in Moscow University during
the 1952-3 school year.

N.S. Mel'nikova and S.I. Sidorkina contributed to the preparation
of § 14 of Chapter IV, V.A. Vasil’ev and M.L. Lidov to § 16, item 1°
of Chapter IV, and .M. Yavorskaya to § 6 of Chapter V1).

[ express my deepest gratitude to them all.

Moscow, March 1954 L. I. Sedov

REFERENCES

[1]. Birkhoff, G., Hydrodynamics. A Study in Logic, Fact, and Similitude,
Princeton University Press, 1950.

[2]. Drobot, S., Warmus, M., “Dimensional analysis in sampling inspection
of merchandise”, Rozprawy Matematyczne, V, Warszawa (1954).

FOREWORD TO THE SIXTH RUSSIAN EDITION

The sixth edition is supplemented with Chapter V, i.e. Introduction
to the Theory of Gas Engines; some additions were made to Chapters{],
IV, and VI. The texts of the earlier editions were checked out and
a number of shortcomings was corrected.

References to recently published papers were enlarged. I shall
specially single out a monograph The Theory of Point Exzplosion
by V.P. Korobeinikov, N.S. Mel'nikova, and E.V. Ryazanov, which

1) Chapter VI in the sixth and subsequent editions.
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is a conceptual relative of the present book and gives a further
elaboration of the theory of explosion.

I am very much indebted and deeply grateful to N.S. Mel'nikova
who undertook the general editing and refinement of the text, as
well as supervised additional computational work and preparation of
new diagrams.

Moscow, February 1967 L. I. Sedov

FOREWORD TO THE EIGHTH RUSSIAN EDITION

As compared to the seven earlier editions, this one has a number of
additions, comments, and improvements.

The topic that has been added to significantly is a comparison of
the theory of isotropic turbulent flow (included in the first edition,
i.e. in 1944) with the latest experimental results. Now that about
forty years have elapsed, we have ample evidence that this theory,
based on the dimensional analysis and similarity theory, is in good
agreement with the experiments carried out within this
period.

It can also be noted that the application-oriented aspects of the
gas dynamics and dimensions theory, developed in Chapters IV and
VI, gradually penetrate the realms of modern astrophysics and
numerous other fields of science.

The arguments based on dimensions of various variable and con-
stant quantities and on physical similarity (scaling) are widely used
nowadays to formulate cognition problems as well as those in diverse
fields of science and technology.

Moscow, May 1976 L. I. Sedov

FOREWORD TO THE NINTH RUSSIAN EDITION

The present, ninth, edition of the monograph has been purged of
misprints that crept into the earlier ones, and supplemented with a
considerable number of briefly annotated references to recent research
results relevant to the body of the text on the theory of unsteady flow
in continuous compressible media.
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Apparently, not all significant contributions, especially those
published outside of the USSR, are covered in the lists of References.
I mostly cite the results connected with my line of work and con-
tributing to the progress of the theories exposed in this monograph.

I hope that future will present us with history-oriented reviews
which will fill this gap.

I wish to express my gratitude to V.V. Rozantseva who has pre-
pared this edition for the publication and N.V. Morugina who did all
the technical work with the manuscript.

Moscow Qctober 1980 L. I. Sedov



CHAPTER |

GENERAL DIMENSIONS THEORY

§ 1. Introduction

Every phenomenon in mechanics is determined by a series of
quantities, such as energy, velocity, and stress, which take on
definite numerical values in specific cases.

Problems in dynamics or statics reduce to the determination of.
certain functions and characteristic parameters. The relevant laws of
nature and geometrical relations are represented as functional
equations, usually differential equations.

In purely theoretical investigations, we use these equations to
establish the general qualitative properties of motion and to cal-
culate unknown physical quantities using mathematical techniques.
However, it is not always possible to solve a mechanical problem
solely by the processes of analysis and calculation; sometimes the
mathematical difficulties are too great. Very often the problem cannot
be formulated mathematically because the mechanical phenomenon
to be investigated is too complex to be described by a satisfactory
model and the equations of motion are unknown. This situation arises
in many important problems in aeromechanics, hydromechanics,
and the theory of structures; in these cases, we have to rely mainly
on experimental methods of investigation to establish the essential
physical features of the problem. In general, we begin every inves-
tigation of a natural phenomenon by finding out which physical
properties are important and by looking for mathematical relations
between them which govern the phenomenon.

Many phenomena cannot be investigated directly, and to deter-
mine the laws governing them we must perform experiments on
similar phenomena which are easier to handle. To set up the most
suitable experiments we must make a general qualitative analysis
and bring out the essentials of the phenomenon in question. More-
over, theoretical analysis is needed when formulating experiments
to determine the values of particular parameters of the phenomenon.
In general, and particularly in designing experiments, it is very
important to select the dimensionless parameters correctly; there
should be as few parameters as possible and they must reflect the
fundamental effects in the most convenient way.
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This preliminary analysis of a phenomenon and the choice of a
system of principal dimensionless parameters are made possible by
dimensional analysis and similarity theory: it can be used to analyse
very complex phenomena and is of considerable help in processing
experimental data. In fact it is out of the question to formulate and
carry out experiments nowadays without making use of similarity
and dimensions concepts. Sometimes dimensional analysis is the
only theoretical means available at the beginning of an investigation
of some phenomenon. However, the potentialities of the method
should not be overestimated. In many cases, only very limited or
trivial results are obtained from dimensional analysis. On the other
hand, the widely held opinion that dimensional analysis rarely
yields results of any importance is completely unjustified: quite
significant results can be obtained by combining similarity theory
with the data obtained from experiment or from the mathematical
equations of motion. In general, dimensional analysis and similarity
theory are very useful both in theory and practice. All results derived
from this theory are obtained in a simple and elementary manner.
Nevertheless, in spite of their simple and elementary character, the
methods of dimensional analysis and similarity theory require con-
siderable experience and ingenuity on the part of an investigator
when probing into the properties of some new phenomenon [1].

In the study of phenomena which depend on a large number of
parameters, dimensional analysis is especially valuable in determin-
ing which parameters are irrelevant and which are significant. We
shall illustrate this point later by examples. The methods of dimen-
sional analysis and similarity theory play an especially large part in
simulating various phenomena.,”™

§ 2. Dimensional and Dimensionless Quantities

Quantities are called dimensional or concrete if their numerical
values depend on the scale used, that is, on the system of the units of
measurement. Quantities are called dimensionless or abstract if their
values are independent of the system of units. Typical dimensional
quantities are length, time, force, energy, and moment. Angles, the
ratio of two lengths, the ratio of the square of a length to an area, the
:gtt.]o of energy to moment, etc. are examples of dimensionless quan-

ities.

.However, the subdivision of quantities into dimensional and
dimensionless is to a certain extent a matter of convention. For
example, we have just called an angle dimensionless. It is known
that angles can be measured in various units, such as radians, de-
grees, or fractions of a right angle. Therefore, the numberdefining
an angle depends on the choice of units; consequently, an angle can
be considered a dimensional quantity. Suppose we define an angle as
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the ratio of the subtended arc of a circle to its radius; the radian—
the angular unit—will then be defined uniquely. Now, if an angle
is measured only in radians in all systems of units, then it can be
considered a dimensionless quantity. Exactly the same argument
applies if a single fixed unit of measurement is introduced for length
in all systems of units. In these circumstances length can be con-
sidered dimensionless. But it is convenient to fix the unit for angle
and inconvenient for length: this is explained by the fact that cor-
responding angles of geometrically similar figures are identical while
corresponding lengths are not and, consequently, it is convenient to
use different basic lengths in different problems.

Acceleration is usually considered a dimensional quantity with
the dimensions of length divided by time squared. In many problems,
the acceleration due to gravity g, equal to the acceleration of a body
falling in a vacuum, can be considered constant (9.81 m/s?). This
constant acceleration g can be selected as a fixed unit of measurement
for acceleration in all systems of units. Then any acceleration will be
measured by the ratio of its magnitude to the magnitude of the ac-
celeration due to gravity. This ratio is called the load factor, a numer-
ical value of which will not vary when converting one unit to
another. Therefore, the load factor is a dimensionless quantity. But
the load factor can be considered a dimensional quantity at the same
time, namely, as acceleration when the acceleration due to gravity
is taken as the unit. In this latter case, we assume that the load
factor—the acceleration—can be taken as a unit which is not equal
to the acceleration due to gravity.

On the other hand, abstract (dimensionless) quantities can be
expressed in various numerical forms. In fact, the ratio of two lengths
can be expressed as an arithmetic quotient, as a percentage, or by
other means.

The concepts of dimensional and dimensionless quantities are therefore
relative. A certain excess of units is employed. When these units are
identical in all systems, the corresponding quantities are called dimen-
sionless. Dimensional quantities are defined as those for which the units
can vary in experimental or in theoretical investigations. Here it is
irrelevant whether or not the investigations are actually carried out.
It follows from this definition that certain quantities can be con-
sidered dimensional in some cases and dimensionless in others. We
gave examples of these above and later we shall encounter a number
of others.

§ 3. Fundamental and Derived Units of Measurement

Different physical quantities are interrelated via a number of
relationships. Therefore, if certain physical quantities are taken as
basic with assigned units, then the units of measurement of all the
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remaining quantities can be expressed in a definite manner in terms
of those of the fundamental quantities. The units taken for the
fundamental quantities will be called fundamental or primary, and
all the rest will be derived or secondary.

In practice, it is sufficient to establish the units for three quantities;
precisely which three depends on the particular conditions of a
problem. Thus, in physical investigations it is convenient to take
the units of length, time, and mass as the fundamental units, and
in engineering investigations to take the units of length, time, and
force. But the units of velocity, viscosity, and density, etc. could
also be taken as the fundamental units.

At the present time, the physical and absolute mechanical systems
of units have become most widespread. The centimetre, gram, and
second have been adopted as the fundamental units in the physical
system (hence the abbreviation—cgs system of units). The metre,
kilogram-force, and second have been adopted as the fundamental
units in the absolute mechanical system (hence the abbreviation—
mks system of units).

The units of length, the metre (equal to 100 cm), of mass, the
kilogram (equal to 1000 g), and of time, the second, have been
established experimentally by definite agreement. Until 1960 the
length of a bar of platinum-iridium alloy, stored in the French
Bureau of Weights and Measures, was taken as the metre; the mass
of another bar of platinum-iridium alloy, stored in the same Bureau,
was taken as the kilogram. The second was assumed to be
1/(24 x 3600) part of a mean solar day [2].

A system of units which is becoming more and more widespread is
the unified International System of Units, SI (from the French,
Systéme International d’Unités). It was enacted as a mandatory
system in the USSR in 1963, and in the COMECON as a whole in
1979.

The fundamental mechanical units in the SI are: the metre, kilo-
gram of mass, and second; the unit of current is the ampere, that of
the thermodynamic temperature is the kelvin, the unit of the lumi-
nous intensity is the candela, and that of the amount of substance is
the mole [3].

Once the fundamental units have been established, the units for
the other mechanical quantities, such as force, energy, velocity, and
acceleration, are obtained automatically from their definitions.

The expression of the derived units in terms of the fundamental units
is called their dimensions. The dimensions are written as a formula in
which the symbol for the dimensions of length, mass, and time is
denoted by L, M, and T, respectively (in the absolute mechanical
system, the unit of force is denoted by K). When discussing dimen-
sions, we must use a fixed system of units. For example, the dimen-
sions of area are L?; the dimensions of velocity are L/T or LT-1, the



