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Preface

The influence of the theory of linear evolution equations upon developments
in other branches of mathematics, as well as physical sciences, would be
hard to exaggerate. The theory has a rich interplay with other subjects in
functional analysis, stochastic analysis and mathematical physics. Of par-
ticular interest are evolution equations associated with second-order elliptic
operators in divergence form. Such equations arise in many models of phys-
ical phenomena; the classical heat equation is a prototype example. They
are also of interest for nonlinear analysis; the proof of existence of local
solutions to many nonlinear partial differential equations uses linear theory.

The theory for self-adjoint second-order elliptic operators is well docu-
mented, and there is an increasing interest in the non-self-adjoint case. It is
one of the aims of the present book to give a systematic study of LP theory
of evolution equations associated with non-self-adjoint operators

9
~§T%<kjaxk> Zbkaﬂfk k(ck)+a0

We consider operators with bounded measurable coefficients on arbitrary
domains of Euclidean space. The sesquilinear form technique provides the
right tool to define such operators, and associates them with analytic semi-
groups on L2, We are interested in obtaining contractivity properties of these
semigroups as well as Gaussian upper bounds on their associated heat ker-
nels. Gaussian upper bounds are then used to prove several results in the
LP-spectral theory.

A special feature of the present book is that several important properties
of semigroups are characterized in terms of verifiable inequalities concern-
ing their sesquilinear forms. The operators under consideration are subject
to various boundary conditions and do not need to be self-adjoint. We also
consider second-order elliptic operators with possibly complex-valued co-
efficients. Such operators have attracted attention in recent years as their
associated heat kernels do not have the same properties as those of their
analogues with real-valued coefficients. This book is also motivated by new
developments and applications of Gaussian upper bounds to spectral theory.
A large number of the results given here have been proved during the last
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decade.

The approach using sesquilinear form techniques avoids heavy use of so-
phisticated results from the theory of partial differential equations or Sobolev
embedding properties for which smoothness of the boundary is required. On
the other hand, as we consider heat equations on arbitrary domains, we shall
not address regularity properties (with respect to the space variable) of their
solutions.

This book is for researchers and graduate students who require an in-
troductory text to sesquilinear form technique, semigroups generated by
second-order elliptic operators in divergence form, heat kernel bounds, and
their applications. It should also be of value for mathematical physicists.
We tried to keep the text self-contained and most of the material needed is
introduced here. A few standard results are stated without proofs, but we
provide the reader with several references.

We now give an outline of the content of each chapter. Chapter 1 is de-
voted to sesquilinear forms and their associated operators and semigroups.
It provides the necessary background from functional analysis and evolu-
tion equations. Most of the material on sesquilinear forms is known, but our
presentation differs from that in other books on this topic. We give a sys-
tematic account on the interplay between forms, operators, and semigroups.
Chapter 2 is devoted to contractivity properties of semigroups associated
with sesquilinear forms. We give criteria in terms of forms for positivity,
irreducibility, L°°-contractivity, and domination of semigroups. These cri-
teria are obtained as simple consequences of a result on invariance of closed
convex sets under the action of the semigroup (see Theorems 2.2 and 2.3).
We also include a section on semigroups acting on vector-valued functions.
All the results in this chapter are in the spirit of the famous Beurling-Deny
criteria for sub-Markovian semigroups. Chapter 3 contains Kato type in-
equalities for generators of sub-Markovian semigroups. For symmetric sub-
Markovian semigroups, a partial description of the domain of the corre-
sponding generator in L? is given. Chapter 4 is devoted to uniformly elliptic
operators of type A as above. We discuss some examples of boundary con-
ditions and apply the criteria of Chapter 2 to describe precisely, in terms of
the boundary conditions and the coefficients, when the semigroup generated
by —A is positive, irreducible, or LP-contractive. Chapter 2 also gives the
right tools to compare (in the pointwise sense) semigroups associated with
two different divergence form operators. Some results are extended in Chap-
ter 5 to the case of degenerate-elliptic operators. Gaussian upper bounds for
heat kernels of uniformly elliptic operators are proved in Chapter 6. We
prove sharp bounds for operators with real-valued symmetric principal co-
efficients ag;. Gaussian upper bounds are derived from LP-contractivity re-
sults together with a well-known perturbation argument due to E.B. Davies.
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We also derive bounds for the time derivatives as well as weighted gradient
estimates for heat kernels. In Chapter 7, we use Gaussian upper bounds to
prove several spectral properties. This includes LP-analyticity of the semi-
group, p-independence of the spectrum, LP-estimates for Schrodinger and
wave type equations. Although the book is devoted to uniformly elliptic op-
erators on domains of Euclidean space, this chapter is written in a general
setting of abstract operators on domains of metric spaces. The framework
includes uniformly elliptic operators on domains of Euclidean space or more
general Riemannian manifolds, sub-Laplacians on Lie groups, or Laplacians
on fractals. In the last chapter we review the Kato square root problem for
uniformly elliptic operators. We include at the end of each chapter a section
of notes where the reader can find references to the literature and supple-
mentary information.

Acknowledgments: 1 wish to express my hearty thanks to the many col-
leagues and friends who have contributed to my understanding of the sub-
ject of this book. I want to thank Wolfgang Arendt, Pascal Auscher, Sonke
Blunck, Thierry Coulhon, Brian Davies, Xuan Thinh Duong, Alan Mcln-
tosh, and Rainer Nagel for their help and encouragement. I’'m grateful to
Philippe Depouilly for his unstinting help with the many tasks involved in
typing the manuscript.



Notation

C.(€): The space of continuous functions with compact support in Q.
C2°(9): The space of C*°-functions with compact support in 2.
(Cg°(92))": The space of distributions on €.

supp(w): The support of the function w.

X() ={2€C,z #0,|argz| < ¢}, Ct := B(3).

ut := sup(u, 0) the positive part of u, u™ := sup(—u, 0) the negative part.
fng:=inf(f,g), fVg:=sup(f,g)

s = F 2

R : Real part, 3: Imaginary part.

xq: Characteristic function of (2.

LP(X, i, K): The classical Lebesgue spaces of functions with values in K.
I|l.llp: The norm of LP(X, u, K).

dx: Lebesgue measure.

W*P: Sobolev spaces.

H(Q) := Wh2(Q), H}(Q) is the closure of CS°(Q) in H(2).

D; = 5% and A = 6%2? + o+ 3%23 is the Laplacian.

L(E, F): The space of bounded linear operators from E into F. L(E) :=
L(E,E).

IT|lz¢k,F) : The operator norm of T in L(E, F).

p(A): Resolvent set of the operator A. o(A): Spectrum of A.
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Chapter One

SESQUILINEAR FORMS, ASSOCIATED
OPERATORS, AND SEMIGROUPS

1.1 BOUNDED SESQUILINEAR FORMS

Let H be a Hilbert space over K = C or R. We denote by (.;.) the inner
product of H and by ||.|| the corresponding norm. Let a be a sesquilinear
form on H, i.e., a is an application from H x H into K such that for every
a€Kandu,v,h € H:

alau+v, h) = aa(u, h) + a(v, h) and a(u, av + h) = @a(u, v) + a(u, h).

(1.1)
Here @ denotes the conjugate number of «. Of course, @ = « if K = R and
in this case the form a is then bilinear. For simplicity, we will not distinguish
the two cases K = R and K = C. We will use the sesquilinear term in both
cases and also write conjugate, real part, imaginary part, and so forth of
elements in K as if we had K = C. These quantities have their obvious
meaning if K = R.

DEFINITION 1.1 A sesquilinear form a : H x H — K is continuous if
there exists a constant M such that

la(u,v)] < M|ul|||v]| for all u,v € H.

Every continuous form can be represented by a unique bounded linear op-
erator. More precisely,

PROPOSITION 1.2 Assume that a : H x H — K is a continuous sesquilin-
ear form. There exists a unique bounded linear operator T acting on H
such that

a(u,v) = (Tu;v) forallu,v € H.
Proof. Fix u € H and consider the linear continuous functional

$(v) == a(u,v), v € H.
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By the Riesz representation theorem, there exists a unique vector Tu € H,
such that

¢(v) = (v;Tu) forallv € H.

The fact that 7" is a linear and continuous operator on H follows easily from
the linearity and continuity of the form a. The uniqueness of T is obvious.
O

The bounded operator T is the operator associated with the form a. One
can study the invertibility of T" (or its adjoint 7*) using the form. More
precisely, the following basic result holds.

LEMMA 1.3 (Lax-Milgram) Let a be a continuous sesquilinear form on H.
Assume that a is coercive, that is, there exists a constant § > O such that

Ra(u,u) > 6|jul|® for all u € H.

Let ¢ be a continuous linear functional on H. Then there exists a unique
v € H such that

é(u) = a(u,v) forallu € H.

Proof. 1t suffices to prove that the adjoint operator 7 is invertible on H.
Indeed, by the Riesz representation theorem, there exists a unique g € H
such that

é(u) = (u;9) forallu € H,
and hence by writing g = T*v for some v € H, it follows that
¢(u) = (u; T*v) = (Tw;v) = a(u,v) for allu € H.
Now we prove that T* is invertible. Let v € H be such that T*v = 0. Thus,
0= (v;T"v) = (Tv;v) = Ra(v,v) > §|v||>.

Hence v = 0 and so 7™ is injective.
It remains to show that 7* has range R(T*) = H. We first prove that
R(T*) is dense. If u € H is such that

(u;T*v) =0forallv € H,

then by taking v = u and using again the coercivity assumption, we obtain
u = 0. Finally, we prove that R(T™) is closed. For this, let vy, = T*uy, be a
sequence which converges to v in H. We have
Sllur = u* < Ra(u, — uj, ue — ;)
S(ur — g T uge — T uy)|

< Jluk = ujllfox — vyl
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From this, it follows that (ug )k is a Cauchy sequence and hence it converges
in H. If u denotes the limit, then v = T™*u by continuity of 7. This proves
that R(T™) is closed. a

1.2 UNBOUNDED SESQUILINEAR FORMS AND THEIR ASSOCIATED
OPERATORS

1.2.1 Closed and closable forms

In this section, we consider sesquilinear forms which do not act on the whole
space H, but only on subspaces of H. These forms are unbounded sesquilin-
ear forms. They play an important role in the study of elliptic or parabolic
equations (cf. Chapters 4 and 5). We will say, for simplicity, sesquilinear
forms rather than “unbounded sesquilinear forms.”

Let H be as in the previous section and consider a sesquilinear form a
defined on a linear subspace D(a) of H, called the domain of a. That is,

a:D(a) x D(a) - K
is a map which satisfies (1.1) for u, v, h € D(a).
DEFINITION 1.4 Let a : D(a) x D(a) — K be a sesquilinear form. We

say that:
1) a is densely defined if
D(a) is dense in H. (1.2)
2) a is accretive if
Ra(u,u) > 0 for all u € D(a). (1.3)

3) a is continuous if there exists a non-negative constant M such that
la(u,v)| < M||ullq||lv]la for all u,v € D(a) (1.4)

where ||ul|q := /Ra(u, u) + ||ul|2.
4) a is closed if

(D(a), ||-lla) ts a complete space. (L.5)

If a satisfies (1.2)—(1.5), one checks easily that ||.||q is a norm on D(a).
It is called the norm associated with the form a.

DEFINITION 1.5 Let a be a sesquilinear form on H. The adjoint form of a
is the sesquilinear form a* defined by:

a*(u,v) = a(v,u) with domain D(a*) = D(a).
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The symmetric part of a is defined by

e %(a +a*), D(b) = D(a).

We say that a is a symmetric form if a* = q, that is,
a(u,v) = a(v,u) for all u,v € D(a).

Let a be a sesquilinear form which satisfies (1.2)—(1.5). Then D(a) is a
Hilbert space. The inner product is given by

1
Lue)s = E[a(u,v) + a*(u,v)] + (u;v) for all u,v € D(a).
The norm ||| is the same as ||.||5, where b is the symmetric part of a.
On a complex Hilbert space H, every sesquilinear form a can be written
in terms of symmetric forms b and ¢ as follows:

a=b+ic, D(a) = D(b) = D(c). (1.6)

It suffices indeed to take b := Z(a+a*) and ¢ := 3-(a—a*). In this way, the

symmetric part b is seen as the real part of the form a and ¢ as the imaginary
part.

In the present chapter we will consider only accretive forms (i.e., forms
that satisfy (1.3)). We could instead consider forms that are merely bounded
from below, that is,

Ra(u,u) > —v(u;u) for all u € D(a)

for some positive constant . The general theory of such forms does not
differ much from that of accretive ones. A simple perturbation argument
(which consists of considering the form a + v, defined by (a+v)(u,v) :=
a(u,v) + v(u;v) for u,v € D(a)) allows us to consider only accretive
forms. According to Section 1.2.3 below, if B denotes the operator asso-
ciated with the accretive form a + +, then A = B — ~] is the operator
associated with a. Here I denotes the identity operator on H.

If a is a symmetric form, the accretivity property (1.3) means that a is
non-negative, that is,

a(u,u) > 0 for all u € D(a).

Thus, for symmetric forms, we use both terms non-negative or accretive to
refer to the property (1.3).

The condition (1.4) means that the sesquilinear form a is continuous on
the space (D(a), ||.]|a). The smallest possible constant M for which (L.4)
holds is of some interest (see, e.g., Theorem 1.52).
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PROPOSITION 1.6 Leta: H x H — K be a closed accretive sesquilinear
form. Then the norms ||.|| and ||.||a are equivalent on H.

Proof. We have for every u € H
lull < llulla = ull® + R, w)]'

In other words, the identity operator I : (H,||.||l) — H is continuous.
Since I is bijective, its inverse I~! = I is continuous by the closed graph
theorem. Hence, there exists a non-negative constant C' such that

lulla < C|lu|| for allu € H.

This shows that the two norms are equivalent. o

A stronger assumption than continuity is sectoriality, which we introduce
in the following definition.

DEFINITION 1.7 A sesquilinear form a : D(a) x D(a) — C, acting on a
complex Hilbert space H, is called sectorial if there exists a non-negative
constant C, such that

|Sa(u, v)| < CRa(u, uw) for all u € D(a). (L.7)
The numerical range of a is the set
N(a) := {a(u,u), u € D(a) with ||u|| = 1}. (1.8)

Clearly, a satisfies (1.7) if and only if the numerical range N (a) is contained
in the closed sector {z € C, |arg z| < arctan C'}.

PROPOSITION 1.8 Every sectorial form acting on a complex Hilbert space
H is continuous. More precisely, if

|Sa(u, u)| < CRa(u,u) for all u € D(a),
where C > 0 is a constant, then
la(u, v)| < (14 C)(Ra(u, u))?(Ra(v,v))/? for all u,v € D(a).

Proof. By (1.6) we have a = b+ 1c, where b and ¢ are symmetric forms and
b is non-negative. By the Cauchy-Schwarz inequality,

|6(u,v)| < b(u, u)?b(v, v)/2.

It remains to estimate |c(u, v)|. Changing v into e*¥v for some 1, we may
assume without loss of generality that ¢(u, v) is real. In this case, we have

c(u,v) = i[c(u—i—v,u—kv) —¢(u—v,u—v)].



