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PREFACE

Most books on ligand-field theory are concerned with the symmetry-
determined aspects of the subject. The assignment of d-d spectra
and the construction of crystal-field correlation diagrams form tho
stuff of most conventional texts, whilst the differences between
various books in this area usually reflect only different degrecs of
mathematical sophistication. In the main, the discipline and rigour
such books describe refer only to quantities which depend on the
angular properties of wavefunctions, radial propertics being se-
questered into ‘proportionality constants’. From an houristic point
of view, such approaches are obviously sensible in that a qualitative
understanding of phenomena must always precede a quantitative one.
On being confronted with a succession of transition-metal electronic
spectra, for example, it is clearly desirable to establish qualitative
relationships between them and to assign electronic transitions to
experimental bands before commenting upon ‘ crystal-field strengths’.
All this is to say that the usual approach to ligand-field theory is via
symmetry and group theory. However mathematical, such an ap-
proach is essentially qualitative; although a semi-quantitative
understanding of spectra and magnectism readily follows.

The principles of crystal-field theory are usually illustrated by
reference to systems with cubic symmetry, and Dg as the only scaling
parameter: but few transition-metal complexes are exactly octahedral
or tetrahedral. In general such distorted molecules display anisotropy
in their electronic, or other, properties as evidenced, for example,
by magnetic anisotropy and spectral polarization studies of single
crystals. Molecules involving coordination numbers other than four or
six may be anisotropic without there being distortion from some ideal
symmetry: five-coordinate trigonal bipyramidal complexes typify such
cases. Less tractable are molecules with rhombic or lower symmetry,
though many may be described as axially distorted from an appro-
priate cubic symmetry precursor. In all cases, doparture from cubic
symmetry means less information can be had from group theory alone.
Crystal-field parameters proliferate in these circumstances, Dg, Ds,
Dt,Cp, Do, D1, p,, p,, being some of the symbols used to label them

[ix]



X Preface

throughout the literature. The parameters used vary from coordina-
tion number to coordination number, from symmetry to symmetry
and from author to author. It is not always clear whether any or all
of these parameters are, or can be, related to one another. Nor is it
clear how the parameter values deduced from the spectra or magnetism
of ‘distorted’ systems reflect geometrical distortions as opposed to
some radial properties which may be related to bonding in some way
analogous to the behaviour of 10 Dg.

The present book has been written to describe and explore the
nature of the purely non-symmetry-determined part of ligand-field
theory. Discussion of symmetry properties is only made to introduce
and define ligand-field parameters. Accordingly an elementary
knowledge of the usual approaches to ligand-field theory is assumed,
together with a similar acquaintance with elementary group theory.
Tt is hoped that the subject matter of this book will draw the attention
of those already expert in the general area of ligand-field theory.
However, the detailed presentation of the material has also been made
with final year honours students and young researchers in mind. Some
of the ideas described are well-established and some are new. The
subject of ligand-field parameters is not closed and to some extent
this book presents a progress report which includes commentary of
some current areas of disagreement in the literature.

The plan of the book is roughly as follows. The introductory chapter
outlines the role of symmetry in ligand-field theory and contrasts it
with the function of splitting parameters. Interpretations and pre-
dictions of the simplest crystal-field and molecular-orbital approaches
to the Spectrochemical Series are reviewed to focus attention on thosc
aspects of ligand-field theory which are not determined by symmetry.
Chapter 2 describes the crystal-field formalism, introducing potentials,
angular and radial integrals and the multipole cxpansion. The expan-
sion of the 1/r;; operator in terms of spherical harmonics is written in
various different ways in order to clarify its use. The significance of
1/r;; as a two-electron operator, and hence the fundamental character
of the crystal-field model, is elaborated in the third chapter where it is
discussed in the more general context of interelectron repulsion
parameters. This chapter also presents a simple discussion of inter-
electron repulsion parameters as determined by group theory and
describes some of the approximations involved in their definition. A
brief resumé of Trees’ correction is included here.

Radial parameters which arise in angularly-distorted systems are
described in chapter 4 and the second-order radial parameter Cpis

Preface xi

introduced. Separation of angular distortion from radial parameters is
emphasized here and several recent results of magnetic and spectral
studies of single crystals are reviewed in this spirit. A similar treatment
of D,, symmetry molecules is made in chapter 5 where Ds and Di
parameters are defined. It is shown how values for these parameters
may be recast in terms of Cp and Dg, thus possibly leading to interest-
ing, and apparently general, trends in the ratio Cp/Dgq. Throughout
both chapters, the philosophy of crystal-field paramecterization is
discussed and the dangers of a too-literal interpretation of the defini-
tions of Ds, Dt, C'p and Dq are emphasized.

Interpretations of radial paramoters begin in chapter 6 which
reviews the naturo and ealculation of 10 Dg, ranging from the most
elementary point-charge model to the latest all-clectron, ab initio,
molecular-orbital calculations. The chapter aims to identify the
assumptions and problems of the various methods which have been
employed to calculate 10 Dg and so give an insight into the various
factors which really determine this quantity. No attempt is made to
provide a basis for actual computation. The difficulties of ab inilio
calculations are such that simpler models must generally be used for
understanding splitting parameters for a wide range of compounds
and in chapter 7, a fresh appraisal of the unrealistic point-change model
is described, largely in a spirit of exploration. Simple trends in the
relative behaviour of Cp and Dg as functions of bond length, cffective
nuclear charge and ligand charge are deduced which indicate an,
albeit temporary, utility for the approach described. Semi-empirical
molecular-orbital models, especially the angular overlap method, are
alternatives favoured by some authors and these arc reviewod in
chapter 8. The chapter ends with a comparison of the parameterized
point-charge model and the angular overlap method applied to low-
symmetry ligand-field parameters.

The Nephelauxetic effect is discussed in chapter 9. The various
formalisms used to describe the effect are outlined and the apparently
opposing views about evidence for differential orbital expansion arere-
viewed. The discussion thus centres round parameters conventionally
symbolized by B,C, Fy, Fy, Bss, fas, fss- As in the discussion of the
low-symmetry crystal-field parameters, some of the current areas of
ignorance and the need for further research are pointed out.

To some extent each chapter may be read independently and in
this form may commend itself as a ‘teaching review’. All but one
chapter end with a listing of particularly relevant and useful texts
which are cited by a lower case letter. All other references are cited
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numerically and listed numerically and alphabetically at the end of
the book.

We are most grateful for the time and effort given us by Professors
A.D.Buckingham and J.Lewis in numerous discussions and in
critically reading much of the manuscript. We should also like to
thank Drs D.J.Mackey, E.D.McKenzie, P.N. Quested and W.R.
Smail and Professor D. P. Craig for various constructive comments in
the earlier stages. Dr Mackey also performed the calculations described
in the appendix to chapter 7. Finally we wish to thank Mrs Thora
Saunders who greatly simplified the later stages by preparing an
accurate typescript so quickly.

July 1972 M. Gerloch
Trinity Hall, Cambridge

R.C.Slade
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SYMMETRY VERSUS
SPLITTING PARAMETERS

1

Symmetry plays a central role in the interpretation of transition metal
d-d spectra. The information contained in these spectra may con-
veniently be considered under the three headings of splitting patterns,
absolute energy differences, and intensitics and polarizations. Only
absolute energy differences are independent of symmetry. Intensities,
though largely determined by non-symmetry factors, do have a
qualitative aspect insofar as selection rules, derived from group
theory, may be involved. Spectral splitting patterns, especially of
highly symmetrical molecules, are very largely symmetry-based
features. In a similar way, the orders of magnitude for magnetic
moments successfully predicted by the ‘spin-only’ formula and the
principles of ecrystal-field orbital quenching derive largely from
group-theoretical considerations. Even early qualitative estimates of
the magnitudes of magnetic anisotropies were made directly from a
knowledge of formal ground term degeneracies.

Our understanding of the magnitudes of spectral splittings and of
the detailed behaviours of magnetic moments and anisotropics,
however, rests on thoories owing little or nothing diroectly to symmetry.
The size of the spectral splitting factor Dgq, for instance, is not deter-
mined by group theory. Also, interpretations of the electronic propor-
ties of molecules with less than cubic symmetry involve many more
such parameters, of which Cp, Dt, Ds, Do and Dt are perhaps the best
known. The nature and use of such quantitative parameters form the
subject matter of this book.

The origin and first examples of the use of crystal-field theory con-
cerned magnetic moments and their dependence on the quenching of
orbitalangular momentum.® Thus, while it wasrealized thatlanthanide
ions in crystal lattices cannot be completely indifferent to their
environment, it was found empirically in the late 1920s that Hund’s

formula, porr = g/IJ(T +1)], (1.1)
where g= 1+J(J+1)_2L}(I}:11))+S(S+l), (1.2)

¢ References marked with a letter are to be found at the end of tho chapter.
I [11] ! GSL



2 Symmetry versus splitting parameters

a formula derived for free-ions, satisfactorily explained the observed
magnetic moments in lanthanide compounds. Crystal-field theory
grew out of the discovery that this simplicity did not extend to the
magnetic properties of compounds of the main transition block. Van
Vleck had derived a complementary formula to (1.1), deseribing the
magnetic moments of free-ions of the first-row transition series
where, in first order, spin-orbit coupling effects might reasonably be
ignored: pett = [ L(L+ 1)+ 48(S + 1)]. (1.3)
Accordingly, the magnetic moments of ions with a Russell-Saunders
3F ground term, Ni%+ for example, should have values of /20 = 4.47
Bohr magnetons. Experimental values for octahedral compounds of
nickel(1I), however, are typically ca. 3.2 Bohr magnetons. The
explanation of these and similar discrepancies came independently in
general terms from Stoner and in comprehensive detail from Bethe.”
It was recognized that, in compounds, the metal electrons are no
longer subject only to the attractive nuclear and the repulsive inter-
electron coulombic (and exchange) forces, but also to the influence of
neighbouring atoms in the molecule or crystal lattice. Without
specifying the nature of this influence, electrostatic or covalent bond-
ing for example, some important conclusions may be made by re-
course only to symmetry. Thus we know that eigenstates transforming
as I terms in spherical symmetry transform as 4, +7,+ T} terms in
cubic symmetry. As discussed below, we also know the relative
ordering of the energies of these terms, barring a sign, from symmetry
considerations alone. In its most elementary form, crystal-field
theory serves to establish this sign by depicting the influencing ligands
as negative charges. So it is that crystal-field theory, but mostly group
theory, establishes a 34,, ground term for octahedral nickel(II)
compounds, for example. The orbital non-degeneracy of this ground
term reduces Van Vleck’s formula (1.3) to the well-known ‘spin-only’

formula,5! pett = {J[48(S +1)] = J[n(n+2)], (1.4)

where 7 is the number of unpaired electrons, and the phrase ‘orbital
quenching’ was coined. We do not make it part of our task to further
discuss aspects of crystal-field theory which are the substance of most
conventional text-books in the subject: a few are listed at the end of
this chapter. While assuming familiarity with these matters, we wish
to highlight some important development points in crystal-field
theory and to emphasize the differing roles played by group theory
on the one hand and ‘quantitative’ theories on the other.
? References marked with 8 number are to be found on pages 229-32.
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The ‘spin-only’ formula and its embellishments with orbital
contributions’ [which are only a reverse way of describing a situation
intermediate between those of (1.3) and (1.4)] go far in explaining
room-temperature average magnetic moments. Also based on the
symmetry-predicted ground state orbital degeneracies is Van Vleck’s
early explanation''? of the sizes of magnetic anisotropies observed in
transition-metal complexes. Magnetic anisotropios are concerned with
spatial anisotropy in molecules (as opposed to spin anisotropy) and so,
in first order at least, with the orbital part of the ground term wave-
functions. A slight departure from cubic symmetry removes the
degeneracy of an orbital-triplet or doublot term, difforent com ponents
being associated with different spatial diroctions in the molecule. In
molecules with formal orbital-triplet ground terms, then, unequal
thermal population of these components may lead to large magnetic
anisotropies. fons with orbital-singlet ground terms, however, should
display no magnetic anisotropy, at least in first order, as distortion has
no orbital degeneracy to remove. This purely symmetry-based theory
satisfactorily explains, for example the < 19, anisotropyt for high-
spin iron(III) compounds with formal 4 1o ground terms and the
typically 30 %, anisotropy for near octahedral ions of cobalt(I1) with
4T, ground terms. It is, however, the business of the quantitative side
of crystal-field or other theories to explain why these cobalt(11)
compounds exhibit 30 %, anisotropies rather than, say, 80 9. It is the

basis of the quantitative aspects of these theories that we shall be
discussing.

We mentioned above how symmetry rules dictate more than just
which term may arise for an ion in a molecular or crystal environ-
ment. It is instructive to examine this powerful use of symmetry
further. The free-ion ground terms in the transition metals are
2D 3F 4F 5D 88 °D AF °F and 2D for the d* to d? configurations, respec-
tively. The group-theoretical transformation rules of lowering the
symmetry from spherical to octahedral give

D9E0+7120’ F”’;A20+T2(1+Tlg’ S%AIU

and are well known. The relative ordering of these terms for the lowest
energy Russell-Saunders free-ion terms are shown in figure 1.1. Let us
remind ourselves of the basic steps in the argument which allows group
theory to derive most of the information in figure 1.1.

In octahedral symmetry a set of five d orbitals splits into a triplet

t Expressed say, as anisotropy of suseeptibility versus mean susceptibility, i.c.
Ax/X.
1-2



4 Symmetry versus splitting paramelters
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Figure 1.1. Splitting diagrams for d” configurations in O, crystal
fields, showing inversions in } and } periods.

and a doublet - thet,, and e, sets — and these are energetically separated
by a quantity we call Ayet or 10Dg. In that ‘the energy of the t,, set’
refers to the energy of a single electron placed in that set, the energy
separation of the K, and Ty, terms which arise from the d' (*D) con-
figuration is also 10Dgq. The situation for the d! configuration is
straightforward and well-known. With one exception, all that is
involved is group theory. The exception is the sign of the orbital or
term splittings. In crystal-field terms the metal orbitals are variously
repelled by negative ligands and the familiar result in octahedral
geometry is that the t,, orbitals lie lower than the e, orbitals. Insofar
as we are concerned with energy splittings, & ‘baricentre rule’ may be
invoked such that a d® configuration is unshifted energetically on
forming a spin-free octahedral complex.© Thus, relative to the d!
configuration, we place the t,, orbitals at —4.Dg in energy and the e,
orbitals at +6Dgq: the same figures pertain for the T,, and K, terms
relative to 2D.

Conventional crystal-field text-books are extensively concerned
with the more complex situation occurring for d configurations in-
volving more than one electron.®¢ Figure 1.2 shows part of the weak-
field/strong-field correlation diagram for octahedral d? ions. Only
spin-triplet terms are shown. On the left side of figure 1.2 inter-
electron repulsion effects split the d? configuration into Russell-
Saunders terms, Hund'’s rules leaving 2F lowest. The nature of these
terms, that is their quantum labelling as opposed to their absolute
energy separations, is determined entirely by coupling coefficients
which in turn derive from the commutation relations between angular

<]
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p °T,

Interelectron
repulsion

Free- Weak Strong-field
ion 0, configurations
field

Figure 1.2, Partial correlation diagram for d? configuration in
0, crystal field, showing spin-triplet terms only.

momentum operators. Group theory of a slightly different kind tells
us that, on lowering the symmetry from free-ion spherical to complex
octahedral, the Russcll-Saunders terms split into the component
terms shown in the figure. At this stage, the ordering and relative
energies of the terms arising, say, from *F arc unknown. As we are
considering energy splittings only, the neglect of crystal-field terms
possessing full spherical symmetry means that the energy of the
8T,,(P) term should be the same as its parent 3P term, in first order.
Group theory alone has therefore established the qualitative nature of
the left-hand side of figure 1.2.

On theright-hand side arerepresented the strong-field configurations
in O symmetry, corresponding to placing two electrons in the Loy
orbital set, one in £,, and one in e, or both in the e, set. At this strong-
field limit, we are supposing that there is no interaction between the
pair of metal electrons. Such interaction would involve two-electron
operators so that the strong-field representations as one-electron
wavefunctions implicitly require the neglect of any electron inter-
actions. The ordering of these strong-field configurations derives
directly from the ordering of the t,, and e, orbitals used in the d* case:
not only the ordering but also the energy values with respect to the
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free-ion spherical distribution represented by d?. If electron inter-
action of any sort is included, the degeneracies of the strong-field
configurations are lost, but in a way determined by group theory. The
12, configuration, for example, gives rise to the terms
14,4+ E, + 1Ty, + 3T,

Figure 1.2 shows the spin-triplet terms which arise in this way. The
next step in the argument is to correlate the terms on the two sides of
the diagrams. This is straightforward for the 34,, and 3T, terms as
these occur only once each. There are two 2T}, terms, however, and
these must be correlated with due regard to the ‘non-crossing rule’
(ref. 17, p. 200). If the abscissa in figure 1.2 is taken to measure free-ion
electron interaction effects, the crystal-field or one-electron operator
effects being held constant, then the energy separation between the
34,, and 3T}, terms stays constant throughout the figure as 10Dg~the
energy separation of the parent strong-field configurations. The two
3T), terms, however, have & variable separation due to a fixed, finite
crystal-field matrix element between these terms separated by
(assumed) variable interelectron repulsions. The calculation of the
off-diagonal crystal-field matrix element  may be made without
recourse to the specific nature of the crystal-field operator. The process
involves the sotting up of the 2T}, energy matrix, as follows:

3T,(F) T14(P)
ST, (F) |-6Dg—E x (1.5)
3T, (P) x 16B— I

where 15B is the 3F —3P energy separation due to interelectron
repulsion and E is the energy of either 3T}, term under the combined
perturbation of crystal-field and interelectronic repulsions. The
diagonal elements are taken with respect to the energy of the 2F term.
In the limit of no interaction between 3T, terms, the baricentre rule
fixes the energy of the 37),(F) term as —6Dq, relative to *F. The
interaction between the two 3T}, terms is represented by the off-
diagonal element z. This matrix represents the situation anywhere
across the abscissa in figure 1.2 as both crystal-field and electron
interaction effects are involved. In order to solve this general secular
problem, we consider the special case where we know the solutions
already; namely, the strong-field limit. Thus, at the right-hand side of
the figure, interelectron repulsions are assumed to vanish and hence
also B in (1.5). This leads to the quadratic equation:

B2+ 8DgE—u% = 0. (1.6)

Symmetry versus splitting parameters 7

In the strong-field limit, however, we know the roots to be —8Dq and
+ 2Dq. Putting £ equal to either of these values in (1.6) gives

x = +4Dq. (1.7)

In summary then, we see how the ordering of the A,,, Ty, and 7T},
terms arising from a free-ion I term and their relative energy sopara-
tions are determined by group-theoretical considerations. Symmetry
oven tells us that, relative to X in figure 1.1 being 10Dq, ¥ and Z for
the d? case are 10Dq and 8Dq respectively. Further, symmetry also
relates the splitting patterns for all the d” configurations, giving rise to
the familiar inversions in the half and quarter periods as shown in
figure 1.1. These inversion rules may be arrived at via the hole formal-
ism. Thus, being concerned here with terms of maximum spin multi-
plicity, we note that six d electrons will arrange themselves with one
electron of one spin per orbital plus a single electron of the other spin.
The distribution of this ‘extra’ electron amongst the five orbitals of
‘other spin’ will be identical to the distribution of the single electron
of the d' configuration. The splitting patterns for a d5+* configuration
should be identical, therefore, to those for a d" configuration. In
addition, the arrangements of 10-n electrons in the whole d spin-
orbital set will be like the arrangements of n electrons but inverted
energetically, as arrangements of 10-n electrons are equivalent to
arrangements of n holes, i.c. particles of opposite charge. Accordingly,
the splitting patterns for d'9-" configurations are the inverse of those
for d*. This rule is responsible for the inversion in the half period of
figure 1.1 and, in conjunction with the similarity of " to d5+", for the
inversions in the quarter period. An alternative way of deriving the
d? —d3 inversion, for example, would be to set up a correlation diagram
like figure 1.2. The left-hand side would be qualitatively identical,
in that symmetry alone at first does not appear to determine the
relative orderings of A, 7,, and T}, terms. But, on approaching the
problem from the strong-field side, we note that the ordering of
strong-field configurations, with the usual single assumption of
negatively charged (or dipolar) ligands, is

(t3g)? < (L) (e,)! < (fag)(e,)? etic.

The group-theoretical transformation of these configurations on
recognizing electron interactions then determines the ordering of the
terms, 44,, being lowest.

We have reviewed the construction of splitting patterns and corre-
lation diagrams in some detail, partly to provide a basis for later
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discussions, but mainly to re-emphasize the role of symmetry in these
‘crystal-field’ arguments. There is one more well-known feature of
these diagrams which is neither group-theoretical nor a quantitative
feature like Aqct or 10Dg. It is the famous —$§ relationship between
the theoretical magnitudes of the splitting parameters in octahedral
and tetrahedral geometries. At the most elementary level, the in-
version implied by the minus sign is conventionally demonstrated by
inscribing an octahedron and a tetrahedron in cubes with common
axes and examining the relative proximity of d, (£, or {,,) and d (e or ¢;)
orbital sets to negatively charged ligands. The § factor assumes
identical natures for the metal and ligands in the two geometries and
equal ‘bond lengths’. Although the origin of the —% factor is not
directly group theoretical, it does derive from geometry. It may be
seen as due partly to a change in coordination number and partly to
the change in size of the cubes in which one inscribes tetrahedra or
octahedra with equal bond lengths. As discussed later in this book,
the — 4 factor is not a quantitative factor on the same footing as the
splitting parameters Dg etc., and as such may be referred to as a
geometrical factor.

So we appreciate the strength of simple crystal-field theory. In
cubic symmetry, a single parameter is sufficient, in first order at least,
to represent the splitting patterns of all d configurations in octahedral,
tetrahedral (or other cubic) geometries and to establish orders of
magnitude for magnetic properties which are consequential on ground
term multiplicities. This power largely derives from group theory.
However, when we are interested in absolute energy splittings, in
correlations between spectra, magnetism, chemistry and structure,
our attention turns to the magnitudes of the splitting factors for
which symmetry and group theory have nothing to say.

Perhaps the most celebrated of early discussions on the magnitude
of crystal-field splittings was that concerning high- and low-spin
iron(11I) compounds. Pauling®! had described his hybridization scheme
for octahedral compounds in which six directed covalent bonds could
be formed involving overlap of ligand (o) orbitals with central metal
d2sp? hybrids. Six pairs of electrons donated by the ligands fill these
directed orbitals. Any further electrons, equal in number to the
number of d electrons on the corresponding metal free-ion, had to fit
into the remaining, unhybridized d orbitals if possible. So, for iron(I1I)
complexes with the d® configuration, six covalent bonds implied five
electrons in three d orbitals and hence one unpaired electron. The low
magnetic moment of the Fe(CN);~ ion was in general agreement with

Symmetry versus splilting paramelers 9

Fe 13- Fe(('N)2-

Increasing crystal-field strength

Figure 1.3. Relationship between spin-pairing and A in crystal-field model.

this idea. On the other hand, the high moment of FeF~ ions, corre-
sponding to five unpaired electrons, implied the non-involvement of
the iron 3d orbitals in hybridization. Pauling therefore considered
the bonding in the complex fluoride to be weaker than in the hexa-
cyanide, more ‘ionic’ in character and, following the later ideas of
Huggins, to involve sp®d? hybrids in which the outer, rather than
inner, d orbitals participate. In Pauling’s view, the change in spin-
multiplicity implied a change of bond type. '

Van Vleck’s!!! approach to the problem was to consider the cyanide
ligands as producing a stronger crystal-field than the fluorides, so
much so that the ground state involved paired electrons even at the
cost of increased interelectron repulsion energy, as in figure 1.3.
Pauling®! found this view unappealing in that fluorine, being the most
electronegative element, might be expected to provide a greater
electrostatic crystal-field perturbation. However, Van Vleck chose to
regard A, the splitting factor, as a parameter of the system, not
necessarily determined solely or largely by purely electrostatic effects.
At the same time he showed!!! the relationships between Pauling’s
hybridization valence-bond method, Bethe’s crystal-field model, and
Mulliken’s molecular-orbital approach,” and we shall have more to
say about this shortly. The important concept to emerge from the



10 / Symmetry versus splitting parameters

FeF§~—/Fe(CN)i~ work is that all ligand influences, whether electro-
static or covalent, could be parameterized within the crystal-field
framework by the splitting factor, A. Actually, this does not need to he
within a crystal-field framework specifically, i.e. electrostatic, for as
discussed earlier, octahedral symmetry requires only one parameter to
describe spectral term splittings (neglecting second-order effects
involving interelectron repulsion parameters) so that the idea of
parameterizing all forms of ligand influence by a single A factor is no
more than a statement of symmetry. The notion has permeated the
chemical literature, however, that electrostatic and covalent bonding
effects are somehow both ‘surprisingly’ compatible with crystal field
theory. We shall return to this point also.

And so we come to that remarkable collection of data called the
‘Spectrochemical Series’. This is an empirical ordering of metals and
ligands according to the size of A values their spectra possess.? For a,
given metal it is found that A values increase along the series

I= < Br- <SCN- < Cl- < F~ < H,0 < NCS- <NH, < en
< dipy < ON-, (L.8)

where en = ethylenediamine and dipy = dipyridyl, and that this
series is approximately independent of the central metal ion. A
second series, approximately independent of the ligand is:

Mn(II) < Ni(I1) < Co(II) < V(II) < Fe(III) < Cr(III) < Co(III) <
Ru(IlT) < Mo(III) < RI(III) < PA(IV) < Ir(I1I) < Pt(IV). (1.9)

The way these two series may be written in terms of only ligands or
only metals may be put in the more revealing and remarkable way
expressing A as a product of a purely ligand function f and a purely

metal function g: A ~ f(ligands). g(metal). (1.10)

Empirical values of f and g, derived from a large number of observed
spectra of octahedral compounds are given in table 1.1, There are
irregularities, but the values in the table are widely applicable.

One feature of series (1.8) noted earlier, is the way A values increase
with decreasing size of the donor atom on the ligand:

I<Br<Cl<S<F<O0«<N<C. (1.11)
This seems reasonable on the basis of a simple electrostatic origin for

the splitting A, as smaller ligands imply smaller bond lengths. On a
simple electrostatic model, involving no penetration of metal orbitals
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TABLE 1.1. Factorizabilily of the Spectrochemical Series

Ligands ¥ Meotal g/10? cin—1
Gl 0.90 V(IT) 12.3
6H,0 1.00 Cr(11D) 17.4
6 urea 0.91 Mn(IT) 8.0
6NH, 1.25 Mn(TV) 23.0
3en 1.28 Fe(11I) 14.0
3 ox?- 0.98 Co(111) 19.0
6C1- . 0.80 Ni(IT) 8.9
6CN- 1.70 Mo(ITI) 24.0
6Br- 0.76 Rh(UIT) 27.0

Re(1V) 35.0
Ir(I11) 32.0
P(IV) 36.0

into the ligand, a charged sphere appears to a point outside to set up
an electrostatic potential equal to that if the total charge were at the
centre of the sphere. Thus net charge and distance (bond length) are
the important factors. What seems less clear from this simple picture
is why OH~ and H,0 ligands give very similar crystal-field splittings.
Similarly MnF, and Mn(H,0);* have nearly identical spectra. Thus
empirically bond lengths appear relevant, as expected from a simple
electrostatic model, but net charge does not. These points have been
emphasized repeatedly by Jorgensen.?5%5% He also points out that
the increase of A values with increasing metal charge, summarized by
the empirical inequalities,

A for M(IT) < M(ILT) < M(IV), (1.12)

‘can hardly be explained by any reasonable electrostatic model’.d
This statement is based on the idea of increasingly contracted metal
orbitals with increased nuclear charge which then interact decreasingly
with the negative or dipolar ligands. The further empirical summation

of series (1.9), that A for 3d<4d < 5d (1.13)

seems qualitatively compatible with the electrostatic model on the
basis of increasing d orbital size, if not of increasing diffuseness.

It is clear, not only from questions stated or implied in earlier
paragraphs but also from general chemical knowledge about electro-
valent and covalent character, that a purely clectrostatic explanation
of spectral splitting factors in general and the Spectrochemical Series in
particular in unrealistic. The origin of A within a molecular-orbital
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Figure 1.4. Schematic MO diagram for o-bonding in 0, symmetry.

framework has also been considered for a long time. In very general
terms we may look at MO diagrams for octahedral complexes involving
first, just o-bonding and then, with 7-bonding also. Schematically the
diagram for a o-bonded octahedral compound is as shown in figure 1.4.
Six o-bonding ligand atomic orbital combinations transform* in O,
symmetry as a,,+ £, + €, These may combine with the metal atomic
orbitals transforming as a,,, ¢,, and e, for s, p and d orbitals, respec-
tively. No o-bonding therefore involves the ¢, metal orbitals. The
diagram, though qualitative, is constructed with the assumption that
bonding between ligand and metal 8, p or d orbitals are sufficiently
similar o leave the e} as the first antibonding orbital above the non-
bonding t,, set. Twelve electrons o-donated by the six ligands fill the
lowest three levels (i.e. the six lowest molecular orbitals) whose
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(a) n-donor ligands () m-acceptor ligands

Figure 1.5. Schematic MO diagrams for 7-bonding in O, symmetry.

ordering is therefore unimportant in the present context. These levels
are indicated within the box in figure 1.4 and show the analogy with
Pauling’s valence-bond d2sp® hybrids. The three ¢,, metal d orbitals are
non-bonding both in Pauling’s scheme and in the present MO scheme.
They house the ‘metal’ electrons if possible: if not, some clectrons go
into the antibonding e} level. The non-bonding ¢,, orbital set with the
antibonding e} set above it, thus ‘mimic’ the ¢,,-e, splitting roferred
to in pure crystal-field theory. The inter-relationship of these three
approaches, Pauling’s valence-bond method, Bethe’s crystal-field
approach and Mulliken’s molecular-orbital model is clear. In the MO
scheme, A increases with increased o-donor ‘strength’; i.e. the more
the bonding e, level is depressed in energy, the more the ¢§ antibonding
is raised. A is associated with the transition t,,—e;.

It proves convenient to consider the addition of a m-bonding
interaction under the separate headings of m-donor and zr-acceptor
ligands.” When discussing 7-donor ligands we should consider fairly
low-lying filled ligand #-bonding orbitals in contrast to high-lying
empty m-antibonding orbitals for 7-acceptor ligands. In either case
the 7-bonding ligand combinations transform ast,, and hence interact
with the metal f,, d orbitals. The extreme cases are represented
schematically in figure 1.5 in which the low energy o-bonding a,,
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and ¢,, orbitals and high energy o-antibonding a}, and ¢}, orbitals are
omitted for clarity. For both cases of 7-donor and 7-acceptor ligands
the diagrams assume similar o-bonding characteristics so that the
bonding e, levels and antibonding e} levels are taken at the same
energies. The 7-bonding interaction in both cases leaves a {,, bonding
MO level lower than a t,, antibonding set, as usual. In the case of the
m-donor ligands, the ¢,, bonding level is filled by ligand electrons but
not in the 7-acceptor case. As a result, and allowing for the different
energies of ligand #-donor and 7-acceptor orbitals, the ‘crystal-
splitting” A is to be associated with the transition 3, e for 7-donors
and with t,, > ej for 7-acceptors. As shown in the figure, this means
larger A values for 7-acceptors than 7-donors. A better statement in
general is that A increases with ligand #-acceptor ability. Such is the
generally accepted explanation of the high place cyanide enjoys in the
Spectrochemical Series. _

It has been suggested® that the Spectrochemical Series need only be
correlated with ligand 7-bonding function. Although this can be mis-
leading and doctrinaire, there is a sense in which it is true. Ideas about
the so-called synergic effect of o-bonding and 7-back-bonding are
well-known and respected in transition-metal theoretical chemistry
(see, for example, ref. f). The potential violation of Pauling’s electro-
neutrality principle by increased ligand o-(or other) donation is offset
by the removal of metal negative charge by ligand #-(or other) vacant
orbitals. Each mode of bonding facilitates the other to a point of
equilibrium. Thus, other things being equal, improved w-acceptor
properties in a ligand may be associated with improved o-donor
properties. But as discussed above, increased 7-acceptor and o-donor
effects both act together to increase the splitting factor A. So, insofar
that the effects of ligand m-acceptor and o-donor properties on A are
inseparable, one could regard the Spectrochemical Series as governed
by one or other alone if one so chose. Such an approach would be at
odds with conventional ideas on the variable possibilities of o-bonding
throughout the series of ligands but perhaps not of 7-bonding. In any
case the separation is indefensible. In tetrahedral symmetry, of course,
o- and 7-bonding contributions to A are even less separable than in
octahedral ones.

There are, then, two main approaches to an understanding of
spectral splitting parameters — crystal-field theory with electrostatic
potentials, and molecular-orbital theory. It is also well to remember
here that there is only one splitting factor in cubic symmetry but
many more in molecules of lower symmetry: we are interested in all of

Symamelry versus splitting paramelers 15
them. While we prefer to leave a critical comparison of the two
approaches till later, it is convenient here to consider some ‘pros and
cons’.

Jorgensen has little regard for the utility of crystal-ficld theory.
Considering the f.g ‘factorizability ’ of the Spectrochemical Series and

other similar matters, he says (ref. d, p. 132):

While all these features justify the greatest optimism regarding the
usefulness of ligand-field theory as a semi-empirical theory...we must
also conclude that the parameter A is nearly impossible to predict
within a factor of 2 or 5 (as it is impossible to predict most other
quantities in theoretical chemistry also) except by the very success-
ful interpolation of empirical series. We may consider A as con-
sisting of mainly four contributions:

A ~ +electrostatic first-order perturbation + o (L - M)
—m(L—->M)+7(L<DM). [1.14]

In the preface of his recent book,%? Modern Aspects of Ligand-Field
Theory, he is more strident still.

However, crystal-field theory still enjoys much popularity in the
introduction of ligand-field theory at elementary levels. This stems
partly from the agreement between crystal-field and molecular-
orbital theories with regard to the qualitative splitting of the d-orbital
set. It is because much of ligand-field theory is concerned with
qualitative questions,suchastherole of symmetry, that theapparently
simpler electrostatic model has long been retained as a framework
within which such questions may be answered. While molecular-
orbital theory undoubtedly provides a more satisfying basis by which
metal-ligand interactions may be discussed, it does not nccessarily
follow that molecular-orbital calculations lead to better quantitative
predictions. Indeed, the semi-empirical MO methods most favoured by
chemists involve gross approximations which lead incvitably to
theoretical predictions of questionable significance.

In the quantitative description of the energy levels of metal
complexes severe problems exist with both approaches. We can
simplify to some extent and say that these problems may be asso-
ciated with the lack of reality in crystal-field theory and the approxi-
mate nature of semi-empirical MO methods. It is pertinent to enquire
whether utility is a better judge than reality in deciding between semi-
empirical methods.

In the simplest crystal-field model the metal orbitals are supposed
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to be repelled by the negative part of the ligands which are represented
either by point-charges or point-dipoles. There is no penetration of the
ligand by the metal orbital and no possibility of electron exchange
effects. Objections to the model range from Pauling’s comment on
FeF3~/Fe(ON)3~ to Jergensen’s remarks on the dependence of A on
metal oxidation state. The attractions of the model, however, are the
simplicity in calculating detailed spectral or magnetic quantities and
also the ease in conception. Objections to semi-empirical molecular-
orbital models are the increased complexity of calculations and the
requirement of such data as valence state ionization potentials or the
like, overlap integrals and so on. Further, at the present time, results
of calculations on one system (metal, say) do not carry over to others
in an obvious way as do those of the crystal-field model. This may
change, however. The obvious attraction of MO methods, of course, is
their conceptual realism.

The previous paragraph contains many bald statements. We hope to
justify our remarks in later chapters. Most work in this area has been
done using crystal-field theory and most parameters in magneto-
chemistry and spectral studies are expressed in these terms. We shall,
therefore, study the crystal-field model in detail first and return to
molecular-orbital approaches later. At this stage we do not wish to
comment further on which approach is ‘ best’. We are interested in the
spectral and magnetic properties of molecules with less than cubic
symmetry and hence in the whole array of crystal-field parameters like
Cp, Ds and Dt. In discussing these, we develop a ‘ crystal-field point of
view’ which seems qualitatively compatible with most experimental
observations. ,
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2
THE CRYSTAL-FIELD FORMALISM

EXPANSION OF FUNCTIONS

The crystal-field model considers isolated molecules or complex ions
in which the central metal electrons are subject to an electric field
originating from the surrounding ligands. Earlier papers in the subject
used to refer to ‘interatomic Stark effects’. The electric field results
from a potential V at any point and the effect of ¥ on a metal electron
at that point is described quantum mechanically by the energy
operator, the Hamiltonian,

H'=—eV. (2.1
Energy calculations of crystal-field splittings require evaluation of
matrix elements of the form

fﬁ.ev.w,..dr = (W leVIvy, (2.2)

in which s represent metal wavefunctions. In order to proceed we
must know how to operate on y; with V. For this we must know the
explicit form of the potential operator V. The form of V is established
uging a most important mathematical theorem called the expansion
theorem. 1t is worth while reviewing this theorem, but we do so in an
informal way.

Without heed to mathematicians’ rigour, the expansion theorem
may be stated as follows:

¢ Almost any function of a set of variables may be expressed as a
linear combination of a complete set of eigenfunctions, of the same
variables, of any operator.’

We shall comment particularly on the italicized words. Sym-
bolically:

Jl@g, 2y, .00) = @y @ (B, %5, ...) + Qa Doy, By, ...)
+ota, (T, Ty, )+, (2.3)
where f is a function of the variables (z,,z,, ...), expanded in terms of
the ¢s, with expansion coefficients a,, where the ¢s form a complete
set of eigenfunctions of some operator £2:
g, = A, $i. (2.4)
[17]
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(@) C®
Figure 2.1.

Consider the function of a single variable x. This may look as unap-
pealing as those in figure 2.1. There are limitations on the sorts of
functions which may be expanded as in {2.3) but we should be all right
if we avoid those which are not single-valued, have infinite discon-
tinuities or, over the variable range to be expanded, have an infinite
number of finite discontinuities.

We may choose any operator according to the theorem, let us choose
02/24*. Eigenfunctions of an operator are those which satisfy (2.4) in

that they are unchanged by the operator except for a numerical

multiplicative factor. For 9%/dx? we could choose the set of functions
sin na: P

5 (sin nx) = — n(sin nx). (2.5)
The proper definition of ‘completeness’ is a complicated matter but
for our purposes it means all possible variations of the type of function
(here all n in sin na) which form an orthogonal set, i.e. are independent
of one another. In the present example, we take sin nx for all positive
integer n. According to the expansion theorem, therefore, we may write
a general function of x as:

f®) = a;sinz +a,sin 2z 4-... + @, sinnx+ ...
= Y a,sin kz. (2.6)
k

Notice that the complete set is infinitely large. We could equally well
have taken the eigenfunctions of 62/dx* as cosnz or indeed the
combination (cosnz+isinnx) = ez, These are all examples of
Fourier series which are thus special cases of the expansion theorem.
In practice it is helpful to choose a basis set, i.e. a set of eigenfunctions,
such that the expansion coefficients a,, tend to vanish as » increases
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giving a (rapidly) convergent series. Such is the hope, for example, in
perturbation theory. It is worth remembering, however, that this is a
matter of convenience rather than of necessity.

Another way of looking at the expansion theorem is by noting the
close mathematical analogy between quantum-mechanical functions
and vectors.?” We may write a vector 4 as a linear combination of the

base vectors &, x,, %
3
4 = a3 +ayx,+agey = Y 4z, (2.7)
k

Note the independence, or orthogonality, of the basc vectors z,. The
coefficients ;, tell us how much of each base vector is in A. They are
the projections of 4 on the base vectors. The dot products

a, = xk.A, (28)
and so (2.7) may be written:
3
A= %}xk(x,l..A). (2.9)

We could equally well expiess 4 in terms of the base vectors y;: these
will be related to the base vectors x, by some transformation-a
rotation perhaps:

4= %yj(yj.A). (2.10)
j

The expansion coefficients b; = (y,.4) (2.11)

are now different as we have expanded 4 in terms of a different set of
basis vectors. All this has a formal analogy in the expausion of
functions. Writing

f(@) = a1$:(@) + a3 $o(@) + ... + a1, P2 + ... (2.12)

we have expressed the function f(z) in terms of the basis functions ¢(z).
We could equally well expand them in terms of another basis, c.g.

f@) = byfr(@) + Do o) + .. + by (@) + (2.13)
The bases must be complete. In the case of vectorsin three-dimensional
space we require three base vectors. There may be many more, even
an infinite number, in the many-dimensional Hilbert space, as it is
called, in which we choose to expand f(z). The analogy between
vectors and functions extends also to the coefficients a, or b;. Thus if
we premultiply (2.12) by ¢ (z) and integrate, we get

[#100) )00 = o[ 6200).put0) ot b, RTINS
(2.14)
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so that, by orthogonality of the basis functions ¢,

a, = f $2(2).J(@).dz = (B ). (2.15)

The integral {¢,|f) corresponds to the dot product of the vectors z;
and 4 in (2.8): {¢,|/) tells us how much of ¢, (¥)is in f(z). From (2.12)

and (2.15) we have: n
1) = S8 G- (2.16)

There are, of course, many more facets of the vector-function analogy.
While they are fascinating, we donot require them for the present task.
We have presented this discussion in order to give two ways of looking
at the expansion theorem. It is a discussion which might well precede
an exposition of perturbation theory or of the variational principle.
The expansion theorem is used throughout quantum mechanics. We
wish to use it now to determine the crystal-field potential eV.

THE CRYSTAL-FIELD POTENTIAL A8 AN EXPANSION

The potential eV set up by an arrangement of ligands around a central
metal immediately presents us with a problem. We wish to operate
with eV, which is produced by ligands at various origins in space, on
metal electronic wavefunctions which are referred to a single origin—
the central metal ion. It is therefore convenient (though not necessary)
toexpress eV in a form referred to the same single origin. The usual way
of doing this is to expand the potential eV as a series of spherical
harmonics centred on the metal ion. Thus we might normally regard a
ligand as a point-charge or collection of point charges and so express
the electrostatic potential it sets up as inversely proportional to the
distance of the charges. Instead we express the potential, or rather
the sum of potentials from all the ligands, in terms of a coordinate frame
whose origin lies elsewhere—on the metal ion. That we can do this
follows from the expansion theorem. The potential occurs in the three
spatial dimensions and so we require three coordinates for the basis
functions in our expansion. It is particularly convenient, though again
not essential, to deal with polar coordinates and express V as: '

V=3 §cg.Rk(r). Y0, $). (2.17)

By analogy with (2.12), ¢fs are expansion coefficients of V with respect
to the basis functions R,(r)Y{(d, #). Note that the basis functions
involve all three coordinates r, 8, $ even though we have separated
them as spherical harmonics Y{(6, ¢) and radial functions E,(r). Note
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also that at this point we need specify nothing about the radial
functions R, (r). To be quite clear, we write the carly part of (2.17) in
extenso:

V=cRYo+ciR Y1+ IR Y+ c R, Y1+ 3R, Y234 .... (2.18)
Clearly (2.17) includes harmonics from Yto Y and as such would be
comparatively useless: but symmetry and group theory arc able to
impose an early series termination.

The power of group theory is only realized in the prosent problem
when the operator is viewed in the context in which it is to be used.
Matrix elements are the observable quantitics, not opcrators. The
matrix elements we must evaluate, in (2.2), may be factorized into
radial and angular parts. Let R(jr) and A(y) stand for the radial and
angular parts of i : similarly R(V)and A(V) for the radial and angular
parts of V. Then a typical matrix element in the series is

M= <'h| VI'/’;')
= (R RV R(J3)) - CAG) | AV A5))- (2.19)
Substituting (2.18) we have:

M = co(R(Y)| R R(Y)) CAGE) | Yo A )
+ R )| By Ry (AW ViAW) + .
+ R | R RO D AW YRAW D+ (2:20)
Now we have not specified the radial parts of either the potential or the
metal wavefunctions so we cannot expect to say anything about the

radial integrals CROP)| Bl RO,
But the angular integrals

A YHAG)
are specified. If in our particular problem any of these angular integrals
vanish identically, i.e. by virtue of symmetry, then there is no point in
knowing the associated radial integral and more important, no point
in knowing the associated expansion coefficient cZ. In other words, by
looking at the group-theoretical behaviour of the angular parts of the

matrix elements of V we can hope to identify those terms in the
expansion of ¥ which are relevant.

SERIES TERMINATORS

A most useful series terminator is derived from the specification of the
wavefunctions y. If ¥, ; are metal d orbitals, the angular matrix
elements of (2.20) vanish for Y{ with k > 4; if metal f orbitals, they



