Herman H. Goldstine

A History of
Numerical Analysis
from the 16th through
the 19th Century

Springer-Verlag
New York Heidelbere Berlin



Herman H. Goldstine

A History of
Numerical Analysis
from the 16th through
the 19th Century

- Springer-Verlag
New York Heidelbere Berlin



HerMAN H. GOLDSTINE !

IBM Research, Yorktown Heights, New York, New York 10598/USA
and -

Institute for Advanced Study, Princeton, New Jersey 08540/USA

To Ellen

“Shall I compare thee to a summer’s day?”

AMS Subject Classifications: 01A40, 01A45, 01A50, 01ASS5, 65-03

Library of Congress Cataloging in Publication Data: Goldstine, Herman Heine,
1913~ . A history of numerical analysis from the 16th through the 19th century.
(Studies in the history of mathematics and physical sciences; 2) Bibliography:
p. . Includes index. 1. Numerical analysis—History. I. Title. II. Series.
QA297.G64 519.4°09°03 77-5029

All rights reserved.

No part of this book may be translated or reproduced in any form without
written permission from Springer-Verlag.

© 1977 by Springer-Verlag, New York, Inc.
Printed in the United States of America.

987654321

ISBN 0-387-90277-5 Springer-Verlag New York
ISBN 3-540-90277-5 Springer-Verlag Berlin Heidelberg



Preface

In this book [ have attempted to trace the development of numerical analysis
during the period in which the foundations of the modern theory were
being laid. To do this I have had to exercise a certain amount of sglectivity
in choosing and in rejecting both authors and papers. I have rather arbitrarily
chosen, in the main, the most famous mathematicians of the period in
question and have concentrated on their major works in numerical analysis
at the expense, perhaps, of other lesser known but capable analysts. This
selectivity results from the need to choose from a large body of literature, and
from my feeling that almost by definition the great masters of mathematics
were the ones responsible for the most significant accomplishments. In any
event I must accept full responsibility for the choices.

I would particularly like to acknowledge my thanks to Professor Otto
Neugebauer for his help and inspiration in the preparation of this book. This
consisted of many friendly discussions that I will always value. I should also
like to express my deep appreciation to the International Business Machines
Corporation of which I have the honor of being a Fellow and in particular
to Dr. Ralph E. Gomory, its Vice-President for Research, for permitting me
to undertake the writing of this book and for helping make it possible by his
continuing encouragement and support. [ should also like to acknowledge the
kindness of the Institute for Advanced Study in sustaining me intellectually
through this task and for providing me with its facilities. I have been consider-
ably helped by watching my colleagues here at their labors. They have served
as exemplars of the highest standards of science and scholarship, and I hope
this book reflects to some extent their inspiration. Since I bear the onus of
responsibility for the contents of this work, 1 do not enumerate the names of
these colleagues except to thank Professor Marshall Clagett for his many
courtesies and kindnesses and Professor Bengt Stromgren of the University
of Copenhagen for opening that university’s libraries to me and providing
me with other facilities as well.

In closing I wish especially to express my deep gratitude to Janet Sachs for
her many kindnesses in helping to improve this book’s style.

Finally my thanks are due to Springer—Verlag for its splendid work and
help in making this material available in attractive form.

July 1977 HEerRMAN H. GOLDSTINE
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Introduction

In Chapter 1, I have attempted to indicate to a small extent the resurgence
of interest by the Western world in science. During the sixteenth and early
seventeenth century mathematical notation began to improve quite markedly.
The rapid emergence of reasonable symbolisms contributed greatly to the
development of mathematics and allied sciences such as mathematical
astronomy.

I begin with a rather full account of both Biirgi’s and Napier’s discovery
of logarithms in which I have tried to show in detail how Napier carried out
out the laborious calculations he made in order to construct his table of
logarithms by means of tables of geometrical progressions. It is fascinating to
contrast this with the much more elegant and sophisticated techniques of his
English successor, Henry Briggs. This man and a predecessor of his at
Oxford, Thomas Harriot (1560-1621), were mainly responsible for the early
developments of finite difference methods. They both understood and used
interpolation formulas in general and subtabulation ones in particular. For
some reason the accomplishments of these two men have not been suffic-
iently appreciated, perhaps because so many honors have been heaped upon
Napier, who was certainly deserving of them.

Briggs noted, firstly that log (1 + x)is proportional to x for sufficiently small
x; secondly that given any number y it is possible by repeated extractions of
square roots to reduce it to a related number y’ of the form 1 + x with x
small; and thirdly that the logarithms of only relatively few numbers need be
calculated since the others can be obtained either as sums of known logarithms
or as subtabulated values. In fact Briggs not only devised subtabulation
schemes, he also worked out a very ingenious difference method to eliminate
some of the work of forming the square roots mentioned above.

In any case the ideas of Napier and Briggs spread rapidly across Europe,
and we shall see Kepler calculating his own tables as soon as he heard of
Napier’s idea. From this point onwards the theory of finite differences was to
be further developed with great artistry by such men as Newton, Euler,
Gauss, Laplace, and Lagrange, among others. In fact we shall see that
virtually all the great mathematicians of the seventeenth and eighteenth
centuries had a hand in the subject.

Among Newton’s predecessors one of the most extraordinary was Frangois -
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Vieta. He had a considerable influence upon the young Newton and upon
numerical analysis. I have given some illustrations of his work, in particular
his solution of algebraic equations.

Toillustrate the rapid advance of mathematics between Kepler and Newton,
I have closed the chapter with the solution of the same problem in plane
geometry as given by Kepler and Newton. This illustrates the progress in
mathematical notation that took place over 75 years between the two men,
and how mathematical analysis became easier as a result of that progress.

Chapter 2 is entitled “ The Age of Newton”. There I have discussed small
portions of Newton’s works: notably, his contributions to numerical tech-
niques such as his method for solving equations iteratively, his interpolation
and numerical integration formulas as well as his ideas on calculating tables
of logarithms and of sines and cosines, In the part on interpolation there is
included a brief account of how Wallis found the value of = by interpolation
and how Newton generalized this by making the upper limit of an integral
variable. As we shall see, this immediately led him to the binomial theorem.

Newton’s friends and contemporaries quickly took up his ideas and
published a great deal of work which is of interest in our field. Thus we find
Halley developing series expansions for calculating logarithmic tables, and
Roger Cotes systematically working out Newton’s ideas on numerical
integration formulas. Stirling and Maclaurin used Newton’s techniques in
developing important results on sums of series, and their names are still well
known today and associated with fundamental series and approximation
methods.

About the same time de Moivre and James Bernoulli worked at building
the foundations for probability theory and the latter, while working in many
other directions, was estimating the sums of powers of successive integers.
This topic was also considered by Maclaurin and later by Euler. Their work
resulted in a considerable body of literature important to numerical analysis

under the general title of Bernoulli and Euler numbers and polynomials. This .

includes summation of functions and difference equations.

There is also some discussion of the extensive research of James Gregory,
a Scot who worked in Edinburgh, more or less independently of Newton.
Gregory had a method of using an interpolation formula involving finite
differences and then of passing to the limit to find series expansions for a
considerable variety of functions, essentially by Taylor’s theorem. In passing
we should note that Gregory’s successor in the mathematics chair at Edinburgh
was Maclaurin, a protégé of Newton.

The contribution of Euler, who did at least the ground work on virtuaily
every topic in modern numerical analysis, is examined next. This work
included the basic notions for the numerical integration of differential
equations. Moreover, his development of lunar theory made possible the
accurate calculation of the moon’s position and the founding of the Nautical
Almanac in Great Britain. :

Lagrange worked on linear difference equations and introduced his now

Introduction xiii

famous method of variation of parameters in this connection. He published
extensively on the subject and must be considered as one of the founders of
our field. He was very interested in interpolation theory, and he wrote several
papers on the subject following up on Briggs’s ideas. He introduced some
quite elegant formalistic procedures which enabled him to develop many
important results. He not only considered the more classical methods of
interpolation, but he and Clairaut seem to have discovered trigonometric
interpolation independently. He was deeply concerned with finding hidden
periodicities in astronomical data and devised some interesting means for
finding these periods.

Laplace used and developed the method of generating functions to study
difference equations which came up in his work on probability theory.
Using this apparatus, he was also able to develop various interpolation,
functions and to produce a calculus of finite differences. Out of his work on
probabilities Laplace developed an elegant treatment of least squares. The
subject, of course, was discovered by Gauss and later by Legendre. However,
it is probably fair to attribute to Gauss and Laplace the real developments of
the subject. But Gauss’s treatment was both simpler and more elegant than
Laplace’s, which depended upon the Law of large numbers.

Gauss wrote much on numerical matters and obviously enjoyed calculating.
He took the Newton-Cotes method of numerical integration and showed
that by viewing the positions of the ordinates, taken to form the finite approxi-
mation to the integral, as parameters to be chosen he could materially improve
the convergence. Jacobi reconsidered this result and gave a very elegant
exposition of it. This was followed up later by Chebyshev who used another
scheme to assign equal weights to the ordinates. In the Gaussian case the
weights are unequal, and Gauss calculated a considerable number of them.
He wrote penetratingly on interpolation and particularly on trigonometric
interpolation. In fact he developed the entire subject of finite Fourier series,
including what we now call the Cooley-Tukey algorithm or the fast Fourier
transform.

Jacobi interested himself in a number of aspects of numerical analysis,
including, as we mentioned above, the Gaussian method of numerical
integration. He also gave an elegant analysis of the Euler—-Maclaurin algorithm
in the course of which he developed the Bernoulli polynomials. He wrote a
paper on finding the characteristic values of a symmetric matrix which has
given rise to the modern Jacobi method and its variants.

Cauchy was yet another great mathematician who worked on numerical
methods. One of his most significant discoveries was a method for finding a
rational function which passed through a sequence of given points. This idea
of approximation by rational, rather than polynominal, functions is still
important and in another connection — Padé approximations — is used
today. In his usual way Jacobi gave a first-class exposition and analysis of
this method of Cauchy. Cauchy also interested himself in trigonometric
interpolation, as did Hermite, apparently in ignorance of Gauss’s results.
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In the course of investigating the Newton-Raphson method Cauchy came
upon the well-known Cauchy-Schwarz inequality. He also made very
skillful use of operational methods for solving both difference and differential
equations. But probably his most important contribution to our field was
made in the field of summation of functions. He based his beautiful results on
his famous Residue theorem which precisely relates an integral and a sum.
The exploitation of his ideas by Lindelof and later by Norlund has resulted in
an elegant theory of considerable depth and beauty.

Another great advance Cauchy made in our subject was his method for
showing the existence of the solutions of differential equations. This so-
called Cauchy-Lipschitz method, as well as that of Picard, form the basis for
some very important techniques for numerically integrating such equations.
These theoretical methods were exploited by John Couch Adams, the
astronomer, who used a successive approximation method numerically
in a work with Bashforth on capillary action. This work was followed by that
of F. R. Moulton who considerably improved upon it.

In a quite different direction K. Heun, W. Kutta and C. Runge developed
a very pretty method for numerical integration of differential equations; and
in fact one of the very first problems run on the ENIAC was done using Heun’s
method. Their ideas are current today.

Both J. C. Adams and Hermite wrote on Bernoulli’s numbers making use
of their exact form as given by Clausen and von Staudt, and Adams tabulated
many of them. Hermite also studied the Bernoulli polynomials and the Euler—
Maclaurin formula. Hermite was also one of the first to appreciate how
Cauchy’s Residue theorem could be used to obtain polynominal approxima-
tions to a function. In this he followed up on a remark of Cauchy that
interpolation formulas properly should come out of the Residue theorem.

We are now on the threshold of the twentieth century, where I have quite
arbitrarily decided to terminate this work. The closing section deals very
superficially with the results of Cauchy and Lindelsf on the summation of
functions and an asymptotic theorem of Poincaré and Perron on the relation
of the zeros of an algebraic equation and certain quotients of solutions of a
related linear difference equation.

1. The Sixteenth and Early Seventeenth
Centuries

1.1. Introduction p

One of the great discoveries of the sixteenth century was that of logarithms
made independently by Biirgi and Napier. This marked a state in the develop-
ment of mathematics where sufficiently sophisticated methods were finally
made available for the understanding of exponentials and their inverses.

Before this time there had been considerable study of the trigonometric
functions, made possible by the fact that their analysis can be undertaken
purely geometrically. Greek mathematicians had already noted the importance
of the relationship of a chord of a circle to the arc it subtends. Hipparchus

_ (circa —140), was probably the first to introduce the chord function — in

modern terms
chord 2« = 2R sin «,

where R is the radius of the circle and 2« is the subtended angle. But the
earliest extant chord table is that in the Almagest of Ptolemy (circa + 140).
Using elegant geometrical theorems, Ptolemy developed formulas for com-
puting chd (« + B), chd (¢ — B) and chd (3c), given chd « and chd 8. It is
of interest to us to note that he calculated chd 1° by an approximation pro-
cedure, starting from chd 0°;45 and chd 1°;30; he found these two values by
repeatedly using the half-angle formula beginning with chd 12°, which he
calculated from a knowledge of the chords of 72° and 60°.

The problem of improving upon Ptolemy’s method of finding chd 1°
engaged many mathematicians, particularly in the Arab world, until the time
of al-Kashi (circa 1400), who worked at the observatory in Samarqand during
the reigns of Tamerlane and his son Shahrukh. Al-Kashi devised an elegant
iterative scheme for solving the cubic

sin 3¢ = 3x — 4x3.

It is fair to assume that the great interest that was shown for many years in

1 Aaboe [1954].



2 1. The Sixteenth and Early Seventeenth Centuries

the theory of equations and in iterative methods for solving algebraic equa-
tions had its genesis in this problem of calculating sin 1° given sin 3°.

However, the study of logarithms is not a development stemming from
early ideas on geometry but in a sense is a precursor of modern analysis. It
was largely made possible by a series of sufficient developments in the under-
standing of algebraic processes and improvements in notation. As we shall
see, in the hands of Briggs, it led very directly into the beginnings of numerical
analysis.

1.2. Napier and Logarithms

It is interesting to trace the European origins of Napier’s great discovery.
In this search Michael Stifel’s name is prominent. Stifel (1487-1567) was a
German mathematician working at Jena, a generation before Napier. He
studied the properties of exponents; in fact he seems to have coined the term
“exponent” in his Die Coss Christoffs Rudolffs [1553]. He discussed properties
of both positive and negative exponents in his Arithmetica Integra [1544],
Book 111, p. 377. There he considered the series

012 3 4 5 6...
1 x x2 x® x* x5 x8...

He noted the intimate connection between these two sequences, the one
arithmetic and the other geometric. In fact he remarked how addition
(subtraction) of terms in the former corresponds to multiplication (division)
in the latter. He also knew that multiplication (division) in the former
corresponds to raising to a power (extracting a root). By 1600 these properties
must have been fairly well understood. Compare, e.g., Simon Jacob, who
was the inventor of an early geometrical or surveying instrument.? These were
not by any means the first or only mathematicians to consider the problem
of exponents.3

Archimedes, in his Sand Reckoner, was already aware of the notion of
geometrical progression. He had a theorem which came very close to being a
statement of one of the laws of exponents. It is given in a somewhat anach-
ronistic form by Heath: “If there be any number of terms of a series in
continued proportion, say Ay, As, Az, ..y Ams oy Aps oo os Angn—z of which
A4, = 1, 4, = 10 [so that the series forms the geometrical progression 1, 10,
10%,...,10m%, ..., 10", ..., 10™*"=2 ], and if any two terms as A, 4,
be taken and multiplied, the product A4,,- 4, will be a term in the same series
and will be as many terms distant from A4, as A4, is distant from 4;; also

2 Jacob [1600].

3 The interested reader may wish to consult Tropfke, GEM, Vol. II, pp. 132-166, for an
account of the early history of exponents.

1.2. Napier and Logarithms 3

it will be distant from A; by a number of terms less by one than the sum of
the numbers of terms by which A4,, and A, respectively are distant from 4,.”*
Thus he seems to have had some feeling for the fundamental relation a™-a* =
a™*" in the third century B.C.

However the first two men who are major figures in the discovery of
logarithms are Joost Biirgi, a Swiss (1552-1632/33), who worked in astronomy
and mechanics both in Prague and Kassel, and John Napier, Laird of
Merchiston (1550-1617). Tt was Napier who in 1614 published his work first
in Edinburgh.® He had labored over the concept and the actual tabulations
for about twenty years. He also wrote another book on the construction of
these tables, which was published posthumously in 1619.% This is part one
of the posthumous work; part two is in “Appendix as to the making of
another and better kind of Logarithms”; part three contains *“Propositienes
for the solutions of spherical Triangles by an easier method.” Part of this
work, as the complete title indicates, is by Briggs. Moreover, in 1616 the
Descriptio appeared in an English translation. It is interesting to note that
in that edition Napier’s name was spelled Nepair; it has been said it was a
title conferred on an ancestor for his peerless bravery. It is not known if the
story is true.

The translation by Macdonald is good and makes available Napier’s work
in an easily accessible form.” This contains a number of good expositions of
Napier's works. (All future references to the Constructio by me are to this
translation.) In considering Napier’s text we should know that Napier pre-
pared his so-called artificial table to make easy the calculation of products of
sines. Of course it makes no difference whether we view the independent
variable as x or sin x but to Napier it was the latter. Originally Napier
referred to his numbers as artificiales; he then coined the term logarithm out
of Xéywv plus dpibuds, i.e., ratio number.

Napier says in his Constructio:

1. A Logarithmic table is a small table by the use of which we can obtain a

knowledge of all geometrical dimensions and motions in space, by a very easy
calculation.
It is deservedly called very small, because it does not exceed in size a table of
sinés; very easy, because by it all multiplications, divisions, and the more difficult
extractions of roots are avoided; for by only a very few most easy additions,
subtractions, and divisions by two, it measures quite generally all figures and
motions.

It is picked out from numbers progressing in continuous proportion.®

+ Heath, ARC, p. 230. A translation of the Greck text appears in Ver Eecke [1960],
Vol. I, p. 366.

5 Napier, Descr. (Cf. also, Napier, NTV.) This is usually referred to as the Descriptio.

¢ Napier, Const. Cf. also, Napier, EC for an English translation. This work is usually
referred to as the Constructio.

7 Napier, NTV. This contains a number of good expositions of Napier’s works.

8 Napier, EC, p. 7.
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We find early on in this book Napier’s invention of the period to signify
a decimal fraction, i.e., the so-called decimal point. He also was aware of
rounding errors and had a way to deal with them. He says in Propositions
5and 6:

5. In numbers distinguished thus by a period in their midst, whatever is written
after the period is a fraction, the denominator of which is unity with as many
cyphers after it as there are figures after the period.

Thus
10000000.04 is the same as 10000000 %;
also
. 803
25.803 is the same as 25 1000°
also
9999998.0005021 is th 9999998 — 2021 _.
B 1s the same as 150000007

and so of others.

6. When the tables are computed, the fractions following the period may then
be rejected without any sensible error. For in our large numbers, an error which
does not exceed unity is insensible and as if it were none.

Thus in the completed table, instead of
. 8213051
9987643.8213051, which is 9987643 10000000°

we may put 9987643 without sensible error.

This use of the period was clearly an improvement on Stevin’s notation
[Stevin, e.g., wrote 8.937 as 8 @ 9 D 3 @ 7 3], but it was not taken up for
a long time by others. In fact Briggs, Napier’s friend, wrote instead
9987643/8213051.° In Napier’s Propositions 26 and 27 he defined his
logarithm function. There he says:

26. The logarithm of a given sine is that number which has increased arith-
metically with the same velocity throughout as that which radius began to decrease
geometrically, and in the same time as radius has decreased to the given sine.

(o} T d S
g g g
C
b t i
a
Figure 1.1.

Let the line TS be radius, and dS a given sine in the same line; let ¢ move
geometrically from T to  in certain determinate moments of time. Again, let bi

“ Napier, NTV, p. 97.
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be another line, infinite towards /, along which, from b, let @ move arithmetically
with the same velocity as g had at first when at T; and from the fixed point 4 in
the direction of { let a advance in just the same moments of time up to the point .
The number measuring the line bc is called the logarithm of the given sine dS.

27. Whence nothing is the logarithm of radius.

For, referring to the figure, when g is at T making its distance from § radius,
the arithmetical point & beginning at b has never proceeded thence. Whence by
the definition of distance nothing will be the logarithm of radius.2®

We can now calculate what Napier’s logarithms really are in our terms.
The line 7S is the radius r or sinus totus — in this case 107, Then if we designate

by (r — x) the length T4 traveled by g and by y the length bc traveled by a
in the same time, dS is x and

%(r—x)=x, %y=r, (l.f)
x0=r, »0)=0. (1.2)
From these relations we see that
Xx = re ¥,
But Napier has defined his logarithm, Nap. Log x, as y, i.e.,
y = Nap. Log x,
and so we have
log, x = log, r — %Nap. Log x

or

Nap. Log x=r logeg = 10" log, g (1.3a)

Actually the line dS represented not x for Napier but Sinx = rsinx =
107 sin x and so (1.3a) is

Nap. Log Sin x = r log, ﬁ = 107 log, STI:—} = —107 log, sin x. (1.3b)

He next showed in Proposition 28 of the Constructio that

r(r — Sin x)

Sy > Nap. Log Sin x > r — Sin x. (1.4)

His proof'is very nice. In Figure 1.1 he extended the line TS = r backwards
to a point o such that oS is to TS as TS is to dS. He then showed that be, the
logarithm of the sine dS, is greater than 7d and less than oT. His proof is
this: *“For in the same time that g is borne from o to 7, g is borne from T
to d; because . . . oT is such a part of oS as Td is of TS, and in the same time

1% Napier, EC, p. 19.
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(by the definition of a logarithm) is @ borne from & to ¢; so that o7, 7d, and
bc are distances traversed in equal times. But since g when moving between
T and o is swifter than at T, and between T and d slower, but at T is equally
fast with a . . .; it follows that oT the distance traversed by g moving swiftly
is greater, and 7d the distance traversed by g moving slowly is less, than bc
the distance traversed by the point a with its medium motion in just the
same moments of time; the latter is, consequently, a certain mean between
the two former.”!t

(It is clear in modern terms from the relations (1.1), (1.2) that dS = re~?,
Td = r(l — e?), and since oS/TS = TS/dS, oS = ret and oT = r(et — 1).
Therefore oT > bc > Td. Thus Napier’s inequalities are equivalent to the
statement that r(e! — 1) > rt > r(1 — e~%).)

Napier gave his Canon, i.e., his table, in the Descriptio. In that work
he gave no explanatory text, putting that off until he brought out his Con-
structio. The detailed calculations are of some interest because of the ingenuity
of his approach.

He first constructed two ancillary tables. In this preliminary work Napier
was at great pains to find easy ways to carry out his task. Thus he hit on the
idea of forming geometric progressions whose terms are very easy to calculate.
He realized that repeated shiftings of the decimal point and subsequent
subtractions are quite simple to perform. He therefore decided to tabulate
the logarithms of numbers lying between his ““radius and half radius” using
only such operations. To do this he constructed his so-called first table, which
is a tabulation of the geometrical progression whose first term is r = 107
and whose common ratio is p; = 1 — 1077, It is shown below. We see there
that his last term is rp!% = 9999900.0004950.

First table. . Thus from radius, with seven cyphers added for

1.2. Napier and Logarithms 7

table, which is again a tabulation of the geometrical progression with first
term r = 107, ratio p, = 1 — 1075 and last term rp,°°.

Second table

Thus the first and last numbers of the First table are

10000000.000000 10000000.0000000 and 9999900.0004950, in which pro-
100.000000 portion it is difficult to form fifty proportional numbers.
79999900.000000 A near and at the same time an easy proportion is
99.999000 100000 to 99999, which may be continued with suffi-
—_—— cient exactness by adding six cyphers to radius and
9999788:88;888 continually subtracting from each number its own
i 100000th part in the manner shown at the side; and
8?099%16;())(:6006000 this table contains, besides radius which is the first, fifty

9995001.222927

other proportional numbers, the last of which, if you

10000000.0000000 greater accuracy, namely, 10000000.0000000, subtract
1.0000000 1.0000000, you get 9999999.0000000; from this sub-
99999999 0000000 tract .9999999, you get 9999998.0000001; and proceed
.6999999 in this way, as shown at the side, until you create a
P —— hundred proportionals, the last of which, if you have
99999998.0000001 computed rightly, will be 9999900.0004950.
9999998 : :
99999997.0000003
9999997
99999996.0000006
to be continued
up to
9999900.0004950

In principle he could have continued this table until he reached half radius
except for the fact that the amount of work would have been completely
prohibitive. He therefore shifted next to a coarser ratio and formed his second

1 Napie;r, EC, p. 20. Notice how easily Napier handled velocities. This shows quite
clearly the degree of sophistication attained in the West by 1600 in coping with non-
uniform motions.

have not erred, you will find to be 9995001.222927.

Notice that the second term rp, in the second table is the nearest “easy”
number just below rp1°, the last entry in the first table. These tables connect
very nicely with only a slight roughness at the transition point. In passing
we might note that Napier made a small arithmetical blunder in forming the
last entry in the second table. He gave it as 9995001.222927; in fact, as
Delambre and others pointed out, it should be 9995001.224804.2 This caused
an error in the last place in Napier’s table of logarithms. The Canon was also
affected by errors in the table of sines he used. Indeed he knew this and
remarked. “. . . it would seem that the table of sines is in some places faulty.
Wherefore 1 advise the learned, who perchance may have plenty of pupils
and computers, to publish a table of sines more reliable and with larger
members, in which the radius is made 100000000. .. .13

Given the first and second tables Napier was now ready to form his third
table which was more extensive than the others. It consisted of 69 separate
geometrical progressions arranged in as many columns. Each had the same
ratio p = 1 — 5 x 10~ The rows were also geometrical progressions whose
ratio was 1 — 10-2, The first term in column one was r = 107 and the last
one in column 69 was 4998609.4034. Thus the third table covered the interval
from radius to half radius, as Napier desired.

To assign logarithms to the quantities in the third table Napier first
assigned a value to Nap. Log 9999999. This fixed all the others. By the result
(1.4) above on upper and lower bounds,

14107 + 10~ 4 ...> Nap. Log 9999999 > 1.

He then remarks that the average of 1 and 1 + 10-7, 1.00000005, will be
taken as Nap. Log 9999999. Now he has the logarithm of every term in-the

12 Napier, M. [1834]. This is an interesting biography by a descendant.

13 Napicer, EC, p. 46. He refers in the text to “Reinhold’s common table of sines, or
any other more exact.” [Erasmus Reinhold (1511-1553) was a colleague of Rhaeticus
at the University of Wittenberg. He was responsible for a famous table (1551) of motions
of the planets based on Copernicus’s De Revolutionibus. They were known as the Tabulae
Prutenicae or Prussian tables after the Duke, Albert of Prussia, who patronized Reinhold.]
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first table. Thus, e.g., “the logarithm of 9999998.0000001, the second sine after
radius, will be contained between ...2.0000002 and 2.0000000; and the
logarithm of 9999997.0000003, the third will be between the triple of the
same, namely between 3.0000003 and 3.0000000.” In this way he immediately
found limits on the logarithms of each term in the first table.

To do the same for the second table he had first to interpolate for the
logarithm of 9999900.'* He first proved a quite interesting theorem. If
Sin a > Sin b, then

r(Sina — Sinb) Nap. Log Sin b — Nap. Log Sina > r(Sina — Sinb) (L.5)

Sinb Sina
This result is not hard to establish.!® He did it as follows.
v T a_e - s

Figure 1.2.

In Figure 1.2 TS = r, dS = Sin a, eS = Sin b. Extend T backwards to ¥V
so that

78 eSS Sin &

TV ~de ~ Sina — Smb (1.6)
Next choose the point ¢ so that

TS dS Sin a

Tc ~de ~ Sma—Snb (1.7)

Therefore we can infer that V'S/TS = T'S/cS = dS/eS and also
Nap. Log eS — Nap. Log dS = Nap. Log ¢S — Nap. TS
= Nap. Log ¢S
since TS = r and the logarithm of r is 0.
But by Napier’s original result (1.4) we have
TV > Nap. Log ¢S > T¢c,

and so with the help of (1.6), (1.7), and (1.8) we have (1.5) at once. These
inequalities of Napier are quite nice and deserve a brief examination. His
relations state thatif x > y > 0

(1.8)

X 107 107 x x
- —1> Nap.Logy — Nap. Log x = log, — — log.— =log, = > 1 — =,
y p. Logy p. Log o4 7 Be gy I

It is easy to see that

% Napier, EC, pp. 29fT.
15 Napier, £C, pp. 26-27.
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Thus his relations imply that the area from y to x under the curve z = 1/x
lies between the rectangle with height 1/y and width x — y and the rectangle
of height 1/x and the same width.

We can now apply the relations (1.5) to calculate the logarithm of
9999900.0000000, the second entry in the second table. We know that the
logarithm of 9999900.0000000, the last one in the first table, is between
100.0000100 and 100.0000000. Then by the last theorem we see that
Nap. Log 9999900 is bounded above by

167 x 0.0004950

100.0000100 + m

= 100.0005050

and below by

107 x 0.0004950

100.0000000 -+ 107 > (1 . 10-5 + 5 X 10_11)

= 100.0004950.

Given this the logarithms of all other entries in the second table are now
trivially calculable. ‘

In the same fashion Napier proceeded to find the logarithms of the second
entries in each column of the third table, and this is why all values were
contaminated by his error in finding the last entry in the second table. He
needed, €.g., the logarithm of 9995000.0000, the second entry in column one.
To do this he used the relations (1.5), where Sin & was 9995001.222927 —
instead of 9995001.224804 — and Sin @ was 995000.0000. (He thereby intro-
duced a very small error into all the logarithms of entries in the third table.)
Having evaluated the logarithms of the quantities in the third table, Napier
now found his so-called radical table, which was constructed by putting next
to each entry in the third table its logarithm, keeping only one of the seven
decimal places he previously had kept. Of this he said: “For shortness,
however, two things should be borne in mind — First, that in these logarithms
it is enough to leave one figure after the point, the remaining six being now
rejected, which, however, if you had neglected at the beginning, the error
arising thence by frequent multiplications in the previous tables would have
grown intolerable in the third. Secondly, if the second figure after the point
exceed the number four, the first figure after the point, which alone is retained,
is to be increased by unity: thus for 10002.48 it is more correct to put
10002.5 than 10002.4; and for 1000.35001 we more fitly put 1000.4 than
1000.3. Now, therefore, continue the Radical table in the manner which has
been set forth.”” 6

Napier was now in a position to form his final table, his Canon of loga-
rithms. To do this he needed not only to find an interpolatory technique so
that he could form the logarithms of the sines of angles spaced 0°;1 (= 1 min.)
apart, but also to find values for those outside the range of his radical table.

¢ Napier, EC, p. 35. Notice Napier’s rounding-off procedure.
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To accomplish his first end he gave a prescription for finding “the
logarithms of all sines embraced within the limits of the Radical table.” 1t was
this: “Multiply the difference of the given sine and table sine nearest it by
radius. Divide the product by the easiest divisor, which may be either the
given sine or the table sine nearest it, or a sine between both, however placed.
By 39 there will be produced either the greater or less limit of the difference
of the logarithms, or else something intermediate, no one of which will differ
by a sensible error from the true difference of the logarithms on account of
the nearness of the numbers in the table. Wherefore (by 35), add the result,
whatever it may be, to the logarithm of the table sine, if the given sine be
less than the table sine; if not, subtract the result from the logarithm of the

table sine, and there will be produced the required logarithm of the given
sine.” 7

To accomplish his second end he gave another prescription: namely, for
finding “the logarithms of all sines which are outside the limits of the radical
table.”” He did this by writing out his so-called short table in which he
recorded the logarithms of numbers (sines) in the ratios of 2, 4, 8, 10, 20, 40,
40, 80, 100, 200, . . ., 10". Then given any sine he multiplied it by one of these
factors until the result was within the limits of the radical table.

His last result is then entitled, “To form a logarithmic table.”

Prepare forty-five pages, somewhat long in shape, so that besides margins at
the top and bottom, they may hold sixty lines of figures. Divide each page into
twenty equal spaces by horizontal lines, so that each space may hold three lines
of figures. Then divide each page into seven columns by vertical lines, double
lines being ruled between the fifth and sixth, but a single line only between the
others.

Next write on the first page, at the top of the left, over the first three columns,
0 degrees.” On the second page, above, to the left, ““ 1 degree”; and below to the
right, 88 degrees.” On the third page above, “2 degrees”; and below, *“87
degrees.” Proceed thus with the other pages, so that the number written above,
added to that written below, may always make up a quadrant, less one degree or
89 degrees.

Then, on each page write, at the head of the first column, *“ Minutes of the degree
written above,” at the head of the second column, “Sines of the arcs to the
left”; at the head of the third column, *“Logarithms of the arcs to the left”; at
the head of the third column, “Logarithms of the arcs to the left”; at both
the head and the foot of the third column, *“ Difference between the logarithms of
the complementary arcs,” at the foot of the fifth column,  Logarithms of the arcs
to the right,” at the foot of the sixth column, * Sines of the arcs to the right™; and
at the foot of the seventh column, * Minutes of the degree written benearh.”

Then enter in the first column the numbers of minutes in ascending order from
0 to 60, and in the seventh column the number of minutes in descending order
from 60 to 0; so that any of minutes placed opposite, in the first and seventh
columns in the same line may make up a whole degree or 60 minutes.'®

17 Napier, EC, p. 36.
8 Napier, EC, pp. 43-44.
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To this book Napier added an Appendix, “On the construction of another
and better kind of Logarithms, namely one in which the Logarithm of unity
is 0.” He evidently realized the awkwardness of his original system in which

7

X4
107 log, % + 107 log, 1—2— — 107 log, 107

I

Nap. Log xy = 107 lo }91
p. Log xy = gexy

il

Nap. Log x + Nap. Logy — Nap. Log 1.

To remedy this and also to have a system in which the logarithms of powers
of 10 would be easy to calculate he proposed, but did not carry out, the
construction of the logarithm where the logarithm of 1 is 0 and the logarithm
of 10 (or 1/10) is 10°. It is clear that the new logarithm of Napier is Log x =
10*° log,, x, and he therefore discovered in a sense both the systems we know
today: logarithms to the bases e and 10. In the same Appendix he gave several
ways to calculate his new logarithms. To this is appended: *““Some remarks
by the learned Henry Briggs on the foregoing Appendix.” In addition the
1616 English translation by Edward Wright of the Descriptio contained a
graphical device for interpolating in the tables. It is shown in Figure 1.3.
Wright himself died in 1615 before the work was published. It was published
by Wright’s son with the help of Briggs.'® It should be remarked in passing
that Edward Wright in 1599 calculated and published a text on Certaine
Errors in Navigation . . . . This table corrected an error arising in the use of
Gerhard Mercator’s chartsand is in essence a tabulation of r log tan (45° — x/2).
It gave the lengths of arcs on nautical meridians and was an important tool
for navigators.2® -

The accounts of the meeting and collaboration of Napier and Briggs are
so well known that they need not be repeated here. We will, however, quote
Briggs’s own account of their scientific interdependence in the Preface to his
Arithmetica Logarithmica (1624).

“That these logarithms differ from those which that illustrious man, the
Baron of Merchiston, published in his Canon Mirificus must not surprise you.
For 1 myself, when expounding their doctrine publicly in London to my

19 Henderson [1926], pp. 26-28. There we find how to use the graph: clearly DC/ED =

DH|FH = AB|BG; thus if we know DE, EC, and DH, we can rcad off BG. Henderson

gives as an example 60/x = 5/3.

20 Wright [1599) and Cajori, **Algebra in Napicers’ Day and Alleged Prior Inventions
of Logarithms,” Napier, NTV, pp. 93-109. What Wright did was to approximate the-
value of the integral [ sec 8 d8 by adding up the successive values of sec 8 starting at
# = 0 and going by 0°;0,1 steps. The relation between the logarithmic tangents and the
values in Wright’s table was first noticed by a Henry Bond in 1645 but an actual proof
was not given until 1668 when it was done by James Gregory in his Exercitationes

Geometricae, p. 7. Cf. also, Gregory, GTV, p. 463. There is an account of this in Bourbaki

[19601], pp. 203-204. (I am indebted to Prot. A. Weil for this reference.) It is also dis-
cussed in Cajori, Napier, NTV, pp. 189-190. Barrow, Wallis, and Halley all gave later

proofs of the relation.
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Figure 1.3.

auditors in Gresham College, remarked that it would be much more con-

venient that 0 should be kept for the logarithm of the whole sine (as in the
Canon Mirificus) but that the logarithm of the tenth part of the same whole
sine, that is to say, 5 degrees 44 minutes and 21 seconds, should be
10000000000. And concerning that matter I wrote immediately to the author
himself; and as soon as the season of the year and the vacation of my public
duties of instruction permitted 1 journeyed to Edinburgh, where being most
hospitably received by him, I lingered for a whole month. But as we talked
“over the change in the logarithms, he said that he had for some time been of
the same opinion and had wished to accomplish it; he had however published
those he had already prepared until he could construct more convenicnt ones
if his affairs and his health would admit of it. But he was of opinion that the
change should be affected in this manner, that 0 should be the logarithm of
unity and 10000000000 that of the whole sine; which I could not but admit
was by far the most convenient (Jonge commodissimum). So, rejecting those
which 1 had previously prepared, I began at his exhortation to meditate

1.3. Briggs and His Logarithms 13

seriously about the calculation of these logarithms; and in the following
summer I again journeyed to Edinburgh and showed him the principal part of
the logarithms I here submit. I was about to do the same in the third summer
also, had it pleased God to spare him to us so long.”*

1.3. Briggs and His Logarithms

Briggs published in 1617 a table called Logarithmorum Chilias Prima. (This
is the first appearance of logarithms to the base 10.) This was followed in
1624 by his Arithmetica Logarithmica.? These tables of Briggs were published
to 14 places but may be in error in the last place. His original idea, as we
saw above, had been to make the logarithm of the sinus totus, the radius =
10'°, zero and of 10° ~ 10*°-sin (5°44,21), 10*°. Thus the original Briggsian
logarithm was 101°(10 — log;, x). He changed his ideas and put out his tables
so that with r = 10*°

Bri. Log x = 10° log,, x,

hence Bri. Log'1 = 0 and Bri. Log r = 10*°.

Before discussing his work, let us say just a word about the man. Henry
Briggs was born in Yorkshire in 1556 and died in 1630. He was at first a
professor in Gresham’s College, London, and then in 1619 he was called to
one of the two chairs established by Sir Henry Savile (1549-1622) at Oxford.
Much of Briggs’s list was spent on the problem of making navigation safer
and faster. This activity was evidently of the highest importance to England,
particularly at this period when seapower was playing such a role in English
history. It is therefore not surprising that Briggs took such a great interest in
logarithms.

As ‘we shall see, Briggs must be viewed as one of the great figures in
numerical analysis. His ideas were far in advance of his time, and he has
never been accorded the honor which is his due. This is probably because of
the fallacious theory which grew up that he was merely the slavey or drudge
who carried out the ideas of his master, Napier. Briggs’s techniques were
purely arithmetical and indicate that he must have been one of the very first,
if not the first, to use the calculus of finite differences with great facility. His
work is, however, difficult to read since he gave no proofs.

The main idea Briggs used (foreshadowed by a remark of Napier) was that
for any number a > 1

.

a? " 1.

Moreover for the numbers he was dealing with the convergence was not too

21 Napier, NTV, pp. 126-127.
22 Briggs, LOG and ARITH. The Arithmetica contains 88 pages of explanation and
application.
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slow. He first prepared a preliminary table for @ = 10 and »n ranging from 1
to 54, keeping up to 32 decimal places. A copy of part of this is given in
Figure 1.4.2% Let us examine the last row, which is of considerable interest.

1o Systéme logarithmique de Briggs

(Extrait)
Nombres Logarithmes
10, 0000 00 1
1 3, 1622.77660.16387.93319.98893.54 0,5
2 1, 7782 79410 03892 28011 97304 13 0,25
3 1, 3335 21432 16322 40256 65389 308 0,125
4 1, 1547 81984 68945 81796 61918 213 0,0625

16

1, 0000 35135 27746 18566 08581 37077

0,00001 52587 89062 5

17 1, 0000 17567 48442 26738 33846 78274 0,00000 76293 94531 25

18 1, 0000 08783 70363 46121 46574 07431 0,00000 38146 97265 625

47 1, 0000 00000 00001 63608 51112 96427 283 »

48 1, 0000 00000 00000 81804 25556 48210 295 »

49 1, 0000 00000 00000 40902 12778 24104 311 »

52 1, 0000 00000 00000 05112 76597 28102 947 0,00000.00000 . 00002 . 2204 . 46059 . 25031

53

1, 0000 00000 00000 02556 38298 64006 470
1, 0000 00000 00000 01278 19149 32003 235

0,00000.00000.00001 . 1102 .23024.62515
0,00000.00000.00000.05561 . 1151231257

i, 0000 00000 00000 01 0,00000.00000.00000.04342 . 94481 . 90325 . 1804

Figure 1.4.

Briggs had somehow noticed that the decimal parts of the second column
bear an interesting relation to each other. If @ = 1 + x with x « 1, then
a'? ~ 1 + x/2. Briggs exploited this relationship most effectively, and indeed
devised schemes which were used until fairly recently for making logarithmic
tables.

He first calculated the function _
102 (n=1,2,...,54),
as indicated in Figure 1.4, and noted that for n near 54
logip 1027 "= log,o (1 + x,) ~ k-x,.
That is, he observed that the logarithm of a number of the form 1 + x with
x very small is essentially proportional to x. We recall that

log;o (1 + x) = (logyo €) log, (1 + x)

= (10810“3)(x _%Xz + %x3 ——‘—11x4+~--).

23 This is extracted from an interesting work on logarithms; Naux [1966].(The logarithmic
entry corresponding to number 54 in that figure is-in. error; the digit 6 should be a 5.)
A very good discussion of the history of the subject is contained in the *“Large and
Original History of the Discoveries and Writings Relating to these Subjects.” This is by
way of being an introduction to Hutton [1801] and is worth reading.
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Thus if x is sufficiently small — say, x < 107!® — its higher powers are less
than 10732 and so up to the first power of x
log,o (1 + x) = xlog,oe = k'-x; (1.9)
where
k' = log;, e = 0.43429448190325182765. ..
Actually Briggs calculated the value of k& by forming the proportion
2783 — -5 0.00000 00000 00000 01 N

1027%° — 1027 10-16% ’
and he then found
10-1%% = 0.00000 00000 00000 04342 94481 90325 1804.24

Notice that the two values &, k', given above, differ in the 17th decimal place.
This is due to the fact that formula (1.9) is not correct to as many places as
we have kept.

Clearly the more nearly correct formula is

logio (1 + %) = x (logye e)(l - ’2‘) (1.10)
Now for x = 10~'¢ this gives for the expression (log e)-(1 — x/2) the value

0.4342 9448190325182765 — 2.1715x10~17
= 0.4342 9448190325180594,

which more nearly corresponds to Briggs’s value.
To form a table of logarithms Briggs needed to consider only the prime

numbers, for obvious reasons. If p is such a number, then for some n he
would have

PP t=1+x (1.1D
with x ~ 1071¢. Thus by the formula (1.9) he had
logop = 2" log,o (1 + x) = 2™x. (1.12)

Thus he reduced his task to finding the successive square roots of a number
down to the point where it was expressible in the form (1.9) above; then the
relation (1.12) immediately gave the desired logarithm.

It is worth remarking on the high degree of ingenuity he displayed in
finding the logarithms of the primes. Thus, e.g., he calculated log2 by
starting with the fact that 2!°/1000 = 1.024. Then 47 extractions of square
roots gave him his result; log 3 was formed by noting that 6° = 10077696

24 Delambre, MOD, Vol. I, pp. 536-537. (There is a systematic mistake in this text:
one zero too many appears in some of the relevant formulas in this part of the discussion.)
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(Arithmetica Logarithmica, p. 16). After 46 extractions of square roots he had
his logarithm.
In practice this involved a tremendous amount of work, so Briggs in-

geniously invented a number of labor-saving devices of a mathematical kind.

Perhaps the most important is his discovery of the calculus of finite differences
to expedite the extractions of square roots. He noticed in effect that when a
number was of the form 1 + y, its square root was expressible as

1
(1 +J’)”2=1+§J"lf 4.1,

and he developed differences especially tailored to this situation. I have
illustrated how it goes in the following table where superscripts indicate the
order of the Briggsian difference, and where 1 + ., = (1 + )"

¢ B B? B?
1+u1
1
iul_u2=B%
1 1 1 2
1+ uy ;B - Bi= B
1 1 1 2% 2 3
iuz—”3=Bz §B1—Bz=31
1 1 1 2
1+U3 ZBQ—B:;:BZ

us — ug = Bj

1+U4

He then used these differences to extrapolate forward. Let us see how he did
this by considering the example

n & B! B? B® B*
1.00757 13453 69831

71386 59690

2 1.00377 85340 25226 33 63766
17813 01156 693

3 1.00188 74857 11457 419778 0
04449 05511 43

4 1.00094 32979 50217 52429 1
01111 73949 .4

5 1.00047 15378 01159 6550

00277 86937
6 1.00023 57411 13643

1.3. Briggs and His Logarithms 17

We notice that the fourth Briggsian differences are very small. Proceed to
find the entries for line 7 by means of the relations

1 1 1
3_2‘3} - B?: B?+2 = TBB?+1 - B?+1: B?+3 = §

1 1 1
le+4 = ZB}+3 - B12+31 B?+s = Ujps5 = QB?+4 - B}+4 = 2”;44 - B}+4-

4 2 3
Bj+1 - BJ‘+2 - Bj+2a

With their help, and the assumption that the B, are 0, we find

Bi = 0.03, B} =0.22, B% = 818.53, Bi = 6945915.72,
BY = u; = 1178636 10905.78.

This gives us 1.00011 78636 10906 as the ¢ entry in line 7. Since Bj is
essentially zero and B = B%/32, it is even less work to find ug. In fact we
have BZ = 102.38, B} = 1736376.62, us = 589300 65076,

£g = 1.00005 89300 69076.

We may proceed in the same way doing only divisions by low powers of 2
to achieve the successive square roots beyond this point. Let us extend the
table further to see what happens:

n & B B . B?
00069 45916
7 1.00011 78636 10906 102
00017 36377 0
8 1.00005 89300 69076 13
4 34081 0
9 1.00002 94646 00457 2
1 08518 0
10 1.00001 47321 91710 0
27130
11 1.00000 73660 68725 . 0
6782
12 1.00000 36830 27580
1696
13 1.00000 18415 12094
424
14 1.00000 09207 55623
106
15 1.00000 04603 77705
26
16 1.00000 02301 88826
: 7
17 1.00000 01150 94406
2
18 1.00000 00575 47201
0
19 1.00000 00287 73600
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We note that the various differences decrease very rapidly so that it becomes
increasingly easy to extend the table.

Suppose we have already found the logarithms of the primes through 101
(there are 26 primes involved), and that we wish to find the logarithm of the
prime 173. We have 173/170 = 1.01764 70588 23529 and

1.01764 70588 23529/1.01 = 1.00757 13453 69831.

But this is the entry for £, in our table above. If we tentatively take the entry
for £,4 to evaluate log;, £, we find

logio & = 2°-log;, e-1.4732 19171-1075 = 0.00327 5832097

and therefore

log;o 173 = logy 170 + logye & + log 1.01
= 2.230448921 + .00327 5832 + .004321374
= 2.238046127.

Actually log,, 173 = 2.23804610. Let us next try with £,,; we then find
log;, 173 = 2.2384610. Note the value of the first Briggsian difference B*
in row 14 as compared to earlier ones. In fact Briggs’s basic relation (1.9),
log,o (1 + x) = x log,, e, requires the higher powers of x to vanish to the
number of places involved.

Let us stop for a moment to see another aspect of Briggs’s differences for
the square-root function.?® As before let the ith Briggsian difference be
written as B! where j = 1, 2, ... indicates the row in which B} appears. We
recall that

By =u, B)=u (1.13)

1 -

Bitt = IES B - Bi,, G,j=0,1,...), (1.19)
where 1 + u is the quantity whose successive square roots we wish to deter-
mine. Now Briggs recorded his differences as powers of u.2¢

We do this as follows:
' 1 1

— 1 i — i+l .
qu—iu,-—B,-,..., Bj+1-—2‘+1B B ey

this may be written as

1 1 1 1 1y
uj+1 = Eu,- 22 B} 1 + 23372_2 ad ?Ba (2“(1)

Bl 4+ .(115)

25 Whiteside, Patrerns, p. 234. This is a very clegant paper and well worth reading in its
entirety. Also Hutton [1801], pp. 67-68. The Briggsian diffcrences appear in Briggs,
ARITH, p. 16 of his Introduction.

26 He went up to B_,. Whiteside, Patterns, p. 234.
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However, Briggs was well aware that eventually his differences became very
small — perexiguus — and may be neglected. Thus for some i, say I, we have

1 .
B;+1=21+1 B; (I<_/)’
and the series (1.15) may be terminated when i/ = I. Briggs chose I = 9.
Finally, Briggs evaluated the successive Bj_, for i = 1,2,...,9 with the
help of the fact that (1 + u;) = (1 + u;_,)*'* and found quite correctly that,
if x = u;,

Bl =B, — By =g
B ;= %B}—z - B}, = %xa + %x*
3 1 2 7 4 5 N 8
,Bj_3=§B —Bj_2=§x +§x +Ex +§x +6—4x
B, = 512 BSy — By = 2805527x1°,

If these are now substituted into (1.15), there results — mirabile dictu — the
Binomial theorem for n = %, #; = x, namely:
1 1-1 1-1.3 , 1.1-3-5

12 2 —_
A+ 0T =145x=53% 346" ~ 2463

x4+...

This must be regarded as the first time the Binomial theorem was developed
for a noninteger exponent. There are two relevant comments: first, the
calculating labor involved in finding the Briggsian differences as functions
of u; is not at all trivial and one can only wonder at Briggs’s prowess; second,
it is curious that he perceived the essential value of the formula a priori.
Whiteside points out the curious fact that the first use of a series approxima-
tion to find logarithms was not of the logarithm but of the square root.*’
Not only did Briggs use these Briggsian differences, he also was facile
with ordinary differences and used them to subtabulate his tables. In fact
his general modus operandi was this: firstly he found the logarithms of the
first 25 primes, 2 through 97, using his method of repeated square roots plus
his Briggsian differences together with other clever devices to simplify the
calculation of these roots: sccondly he tabulated the logarithms of about 20
percent of his table with the help of these primes; and thirdly he subtabulated,
i.e., he filled in intermediate values, to find the rest of his entries. To do this
he had to discover one of the now well-known interpolation formulas, which

-we discuss in Section 1.5.28

27 Whiteside, Patterns, p. 234.
28 Whittaker, WR, p. 11.



