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Deformation of Earth Materials

Much of the recent progress in the solid Earth sciences is based
on the interpretation of a range of geophysical and geological
observations in terms of the properties and deformation of
Earth materials. One of the greatest challenges facing geo-
scientists in achieving this lies in finding a link between phys-
ical processes operating in minerals at the smallest length
scales to geodynamic phenomena and geophysical observa-
tions across thousands of kilometers.

This graduate textbook presents a comprehensive and
unified treatment of the materials science of deformation as
applied to solid Earth geophysics and geology. Materials
science and geophysics are integrated to help explain
important recent developments, including the discovery of
detailed structure in the Earth’s interior by high-resolution
seismic imaging, and the discovery of the unexpectedly
large effects of high pressure on material properties, such
as the high solubility of water in some minerals. Starting
from fundamentals such as continuum mechanics and
thermodynamics, the materials science of deformation of Earth
materials is presented in a systematic way that covers elastic,
anelastic, and viscous deformation. Although emphasis is
placed on the fundamental underlying theory, advanced
discussions on current debates are also included to bring read-
ers to the cutting edge of science in this interdisciplinary area.

Deformation of Earth Materials is a textbook for graduate
courses on the rheology and dynamics of the solid Earth, and
will also provide a much-needed reference for geoscientists in
many fields, including geology, geophysics, geochemistry,
materials science, mineralogy, and ceramics. It includes review
questions with solutions, which allow readers to monitor their
understanding of the material presented.

SHUN-IcHIRO KARATO is a Professor in the Department of
Geology and Geophysics at Yale University. His research
interests include experimental and theoretical studies of the
physics and chemistry of minerals, and their applications to
geophysical and geological problems. Professor Karato is

a Fellow of the American Geophysical Union and a recipient
of the Alexander von Humboldt Prize (1995), the Japan
Academy Award (1999), and the Vening Meinesz medal
from the Vening Meinesz School of Geodynamics in The
Netherlands (2006). He is the author of more than 160 journal
articles and has written/edited seven other books.



Preface

Understanding the microscopic physics of deformation
is critical in many branches of solid Earth science.
Long-term geological processes such as plate tectonics
and mantle convection involve plastic deformation of
Earth materials, and hence understanding the plastic
properties of Earth materials is key to the study of
these geological processes. Interpretation of seismolog-
ical observations such as tomographic images or seis-
mic anisotropy requires knowledge of elastic, anelastic
properties of Earth materials and the processes of plas-
tic deformation that cause anisotropic structures.
Therefore there is an obvious need for understanding
a range of deformation-related properties of Earth
materials in solid Earth science. However, learning
about deformation-related properties is challenging
because deformation in various geological processes
involves a variety of microscopic processes. Owing to
the presence of multiple deformation mechanisms,
the results obtained under some conditions may not
necessarily be applicable to a geological problem that
involves deformation under different conditions. There-
fore in order to conduct experimental or theoretical
research on deformation, one needs to have a broad
knowledge of various mechanisms to define conditions
under which a study is to be conducted. Similarly,
when one attempts to use results of experimental or
theoretical studies to understand a geological problem,
one needs to evaluate the validity of applying partic-
ular results to a given geological problem. However,
there was no single book available in which a broad
range of the physics of deformation of materials was
treated in a systematic manner that would be useful for
a student (or a scientist) in solid Earth science. The
motivation of writing this book was to fulfill this need.

In this book, I have attempted to provide a unified,
interdisciplinary treatment of the science of deforma-
tion of Earth with an emphasis on the materials
science (microscopic) approach. Fundamentals of the

materials science of deformation of minerals and
rocks over various time-scales are described in addition
to the applications of these results to important geo-
logical and geophysical problems. Properties of materi-
als discussed include elastic, anelastic (viscoelastic),
and plastic properties. The emphasis is on an interdis-
ciplinary approach, and, consequently, I have included
discussions on some advanced, controversial issues
where they are highly relevant to Earth science prob-
lems. They include the role of hydrogen, effects of
pressure, deformation of two-phase materials, local-
ization of deformation and the link between viscoelas-
tic deformation and plastic flow. This book is intended
to serve as a textbook for a course at a graduate level in
an Earth science program, but it may also be useful for
students in materials science as well as researchers
in both areas. No previous knowledge of geology/
geophysics or of materials science is assumed. The
basics of continuum mechanics and thermodynamics
are presented as far as they are relevant to the main
topics of this book.

Significant progress has occurred in the study of
deformation of Earth materials during the last ~30
years, mainly through experimental studies. Experi-
mental studies on synthetic samples under well-defined
chemical conditions and the theoretical interpretation
of these results have played an important role in under-
standing the microscopic mechanisms of deformation.
Important progress has also been made to expand
the pressure range over which plastic deformation can
be investigated, and the first low-strain anelasticity
measurements have been conducted. In addition,
some large-strain deformation experiments have been
performed that have provided important new insights
into the microstructural evolution during deformation.
However, experimental data are always obtained under
limited conditions and their applications to the Earth
involve large extrapolation. It is critical to understand
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the scaling laws based on the physics and chemistry of
deformation of materials in order to properly apply
experimental data to Earth. A number of examples of
such scaling laws are discussed in this book.

This book consists of three parts: Part I
(Chapters 1-3) provides a general background includ-
ing basic continuum mechanics, thermodynamics and
phenomenological theory of deformation. Most of this
part, particularly Chapters 1 and 2 contain material
that can be found in many other textbooks. Therefore
those who are familiar with basic continuum mechan-
ics and thermodynamics can skip this part. Part II
(Chapters 4-16) presents a detailed account of materi-
als science of time-dependent deformation, including
elastic, anelastic and plastic deformation with an
emphasis on anelastic and plastic deformation. They
include, not only the basics of properties of materials
characterizing deformation (i.e., elasticity and viscos-
ity (creep strength)), but also the physical princi-
ples controlling the microstructural developments
(grain size and lattice-preferred orientation). Part III
(Chapters 17-21) provides some applications of the
materials science of deformation to important geolog-
ical and geophysical problems, including the rheolog-
ical structure of solid Earth and the interpretation of
the pattern of material circulation in the mantle and
core from geophysical observations. Specific topics
covered include the lithosphere-asthenosphere struc-
ture, rheological stratification of Earth’s deep mantle

and a geodynamic interpretation of anomalies in seis-
mic wave propagation. Some of the representative
experimental data are summarized in tables.
However, the emphasis of this book is on presenting
basic theoretical concepts and consequently references
to the data are not exhaustive. Many problems (with
solutions) are provided to make sure a reader under-
stands the content of this book. Some of them are
advanced and these are shown by an asterisk.

The content of this book is largely based on lectures
that I have given at the University of Minnesota and
Yale University as well as at other institutions. I thank
students and my colleagues at these institutions who
have given me opportunities to improve my under-
standing of the subjects discussed in this book through
inspiring questions. Some parts of this book have
been read/reviewed by A.S. Argon, D. Bercovici,
H.W. Green, S. Hier-Majumder, G. Hirth, I. Jackson,
D.L. Kohlstedt, J. Korenaga, R.C. Liebermann,
J.-P. Montagner, M. Nakada, C.J. Spiers, J. A. Tullis
and J. A. Van Orman. However, they do not always
agree with the ideas presented in this book and any
mistakes are obviously my own. W. Landuyt, Z. Jiang
and P. Skemer helped to prepare the figures. I should
also thank the editors at Cambridge University Press
for their patience. Last but not least, I thank my family,
particularly my wife, Yoko, for her understanding, for-
bearance and support during the long gestation of this
monograph. Thank you all.
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Stress and strain

The concept of stress and strain is key to the understanding of deformation. When a force is applied to
a continuum medium, stress is developed inside it. Stress is the force per unit area acting on a given
plane along a certain direction. For a given applied force, the stress developed in a material depends
on the orientation of the plane considered. Stress can be decomposed into hydrostatic stress (pressure)
and deviatoric stress. Plastic deformation (in non-porous materials) occurs due to deviatoric stress.
Deformation is characterized by the deformation gradient tensor, which can be decomposed into
rigid body rotation and strain. Deformation such as simple shear involves both strain and rigid body
rotation and hence is referred to as rotational deformation whereas pure shear or tri-axial compression
involves only strain and has no rigid body rotation and hence is referred to asirrotational deformation.
In rotational deformation, the principal axes of strain rotate with respect to those of stress whereas
they remain parallel in irrotational deformation. Strain can be decomposed into dilatational
(volumetric) strain and shear strain. Plastic deformation (in a non-porous material) causes shear strain
and not dilatational strain. Both stress and strain are second-rank tensors, and can be characterized by
the orientation of the principal axes and the magnitude of the principal stress and strain and both have
three invariants that do not depend on the coordinate system chosen.

Key words stress, strain, deformation gradient, vorticity, principal strain, principal stress, invariants

of stress, invariants of strain, normal stress, shear stress, Mohr's circle, the Flinn diagram, foliation,
, . , , gl s

lineation, coaxial deformation, non-coaxial deformation.

I.1. Stress
I.1.1. Definition of stress

This chapter provides a brief summary of the basic
concept of stress and strain that is relevant to under-
standing plastic deformation. For a more comprehen-
sive treatment of stress and strain, the reader may
consult MALVERN (1969), MAsE (1970), MEANS (1976).

In any deformed or deforming continuum material
there must be a force inside it. Consider a small block
of a deformed material. Forces acting on the material
can be classified into two categories, i.e., a short-range
force due to atomic interactions and the long-range

force due to an external field such as the gravity
field. Therefore the forces that act on this small
block include (1) short-range forces due to the dis-
placement of atoms within this block, (2) long-range
forces such as gravity that act equally on each atom
and (3) the forces that act on this block through the
surface from the neighboring materials. The (small)
displacements of each atom inside this region cause
forces to act on surrounding atoms, but by assump-
tion these forces are short range. Therefore one
can consider them as forces between a pair of atoms
A and B. However, because of Newton’s law of action
and counter-action, the forces acting between two
atoms are anti-symmetric: fag=—fga Where fap (8a)
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FIGURE 1.1 Forces acting on a small pyramid.

are the force exerted by atom A (B) to B (A).
Consequently these forces caused by atomic displace-
ment within a body must cancel. The long-range force
is called a body force, but if one takes this region as
small, then the magnitude of this body force will
become negligible compared to the surface force (i.e.,
the third class of force above). Therefore the net force
acting on the small region must be the forces across
the surface of that region from the neighboring mate-
rials. To characterize this force, let us consider a small
piece of block that contains a plane with the area of dS
and whose normal is 7 (n is the unit vector). Let T be
the force (per unit area) acting on the surface dsS from
outside this block (positive when the force is compres-
sive) and consider the force balance (Fig. 1.1). The
force balance should be attained among the force T
as well as the forces T'** that act on the surface
dS) >3 respectively (dS),; are the projected area of
dS on the plane normal to the x;, 3 axis). Then the
force balance relation for the block yields,

3
Tds=Y_T/ds;.
=1

(1.1)

Now using the relation dS; = n; dS, one obtains,

3
(1.2)

where T is the ith component of the force T and oy is
the ith component of the traction 7, namely the ith
component of force acting on a plane whose normal is
the jth direction (n; = T7). This is the definition of
stress. From the balance of torque, one can also show,

(1.3)

0ij = Tji-

The values of stress thus defined depend on the
coordinate system chosen. Let us denote quantities in
a new coordinate system by a tilda, then the new coor-
dinate and the old coordinate system are related to
each other by,

(1.4)

3
Ti=) g
=

where g;; is the transformation matrix that satisfies the
orthonormality relation,

3
E Qijdjm = Bim
Jj=1

where 6;,, is the Kronecker delta (6,,,=1 for i=m,
i = 0 otherwise). Now in this new coordinate system,
we may write a relation similar to equation (1.2) as,

3
Ti=Y" &y
=

Noting that the traction (7) transforms as a vector in
the same way as the coordinate system, equation (1.4),
we have,

(1.5)

(1.6)

(1.7)
Inserting equation (1.2), the relation (1.7) becomes,

T

Il
.Mw

Ok Ajh . (18)

(1.9)

Inserting this relation into equation (1.8) and compar-
ing the result with equation (1.6), one obtains,’

3
o5 = E TkiQik djt.
k=1

(1.10)

The quantity that follows this transformation law is
referred to as a second rank tensor.

I.1.2.  Principal stress, stress invariants

In any material, there must be a certain orientation of a
plane on which the direction of traction (7) is normal
to it. For that direction of n, one can write,

T; = on;

(1.11)

' In the matrix notation, & = A - o - A7 where A4 = (ay) and AT = (a).
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where o is a scalar quantity to be determined. From
equations (1.11) and (1.2),

(1.12)

(0 — obi)n; = 0.

3
g=

-1

For this equation to have a non-trivial solution other
than n =0, one must have,
‘(7(/' — 0'(5,'/" = 0

(1.13)

where |X,,-| is the determinant of a matrix X;;. Writing
equation (1.13) explicitly, one obtains,

gy —ag a12 a13

021 0n —0 023 = 703+I{,02+II(,0+[1]”:0
031 g32 033 — 0
(1.14)
with
Ip =01+ 02+ 033 (1.15a)
ll, = —0110 — 011033 — 03302 + 07, + 013 + 03,
(1.15b)
I, = 0110203 + 2012023031 — 01105
(1.15¢)

2 2
— 022073 — 03307,

Therefore, there are three solutions to equation (1.14),
o1,02,03(01 >03>03).These are referred to as the
principal stresses. The corresponding n is the orienta-
tion of principal stress. If the stress tensor is written
using the coordinate whose orientation coincides with
the orientation of principal stress, then,

g1 0 0
[of]=10 o 0 (1.16)
0 0 o3

It is also seen that because equation (1.14) is a scalar
equation, the values of I, 11, and /11, are independ-
ent of the coordinate. These quantities are called the
invariants of stress tensor. These quantities play
important roles in the formal theory of plasticity (see
Section 3.3). Equations (1.15a—) can also be written

in terms of the principal stress as,

I, =01 +0,+03 (1.17a)
1, = —010y — 0203 — 030} (1.17b)
and
111,720'10'20'3. (117C)

]

X1

X3
*2

01

FIGURE 1.2 Geometry of normal and shear stress on a plane.

I1.1.3. Normal stress, shear stress,

Mohr’s circle

Now let us consider the normal and shear stress on a
given plane subjected to an external force (Fig. 1.2).
Let x, be the axis parallel to the maximum compres-
sional stress o and x; and x;3 be the axes perpendicular
to x;. Consider a plane whose normal is at the angle 6
from x; (positive counterclockwise). Now, we define a
new coordinate system whose x| axis is normal to the
plane, but the x} axis is the same as the x, axis. Then
the transformation matrix is,

cosf 0 —sinf
sinf 0 cosé
and hence,
M+Ul = cos20 0 uqin 26
2 2 2
(6] = 0 92 0
g1 —03 . U]+£73_0'1—0'3
Tsm 26 0 S T cos 26
(1.19)

Problem I.1

Derive equation (1.19).

Solution

The stress tensor (1.16) can be rotated through the
operation of the transformation matrix (1.18) using
equation (1.10),
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[cosf O —sinf][oy 0 O cosf 0 siné

Gild=] 0 1 o0 0 o 0 0 1 0

Lsind 0 cosf 0 0 o3| [—sinf 0 cosé

il ; 242 Beos20 0 2 Bsin2g
= 0 [ep) 0
L %sin 20 0 % — %cos 26

Therefore the shear stress T and normal stress o,, on this
plane are

g1 — 03

&1357—=Tsin20 (1.20)
and
&33EU,IIM_MCOSZQ (1.21)

2 2

respectively. It follows that the maximum shear stress
is on the two conjugate planes that are inclined by
+n/4 with respect to the x; axis and its absolute mag-
nitude is (o7 — 03)/2. Similarly, the maximum com-
pressional stress is on a plane that is normal to the x,
axis and its value is 0. It is customary to use o — o3 as
(differential (or deviatoric)) stress in rock deformation
literature, but the shear stress, 7 = (07 — 03)/2, is also
often used. Eliminating 6 from equations (1.20) and
(1.21), one has,

o +opn? 1
™+ (O’n —¥) = (0] —o3)>.

5 : (1.22)

Thus, the normal and shear stress on planes with var-
ious orientations can be visualized on a two-dimensional
plane (m—o, space) as a circle whose center is located
at (0,(o1 + 03)/2) and the radius (o) —o03)/2
(Fig. 1.3). This is called a Mohr’s circle and plays an
important role in studying the brittle fracture that is
controlled by the stress state (shear—normal stress ratio;
see Section 7.3).

When o = 0, = o3(= P), then the stress is isotro-
pic (hydrostatic). The hydrostatic component of stress
does not cause plastic flow (this is not true for porous
materials, but we do not discuss porous materials
here), so it is useful to define deviatoric stress

[
(T,]':O'U*(S,','P.

(1.23)

When we discuss plastic deformation in this book, we
use oy (without prime) to mean deviatoric stress for
simplicity.

A=(0,0)
B=(0,03)
- C=(0,(oy+03)/2)
R=(oy—03)/2

R

FIGURE 1.3 A Mohr circle corresponding to two-dimensional stress
showing the variation of normal, o,, and shear stress, 7, on a plane.

Problem 1.2

Show that the second invariant of deviatoric stress

2

. 1
can be written as 11, = 13 {(01 — o) 4 (02 — 03)2+

(o3 — 01)2] :

Solution

If one uses a coordinate system parallel to the
principal axes of stress, from equation (1.15), one
has I, = —o\0} — 00} — o40%. Using I, = o + o)+
finds P2 =of 4+ of + o7 +2(0)oh+
0404 + d404) = 0. Therefore 1l, =1(c? + o2+0%).

Now, inserting ¢ = oy —1(0y + 03 +03) etc.,, one

Foo
03 =0, one

2

obtains 17, :% (0'1 - 0'2)2 + (0'2 - 0'3) +(U3 — 01)2:| .

Problem 1.3

Show that when the stress has axial symmetry with
respect to the x; axis (i.e., o, = 03), then o, = P+
(o1 — 03)(cos? § — 1).

Solution

From (1.21), one obtains, o, = (0| +03)/2+
((o1 — 03)/2) cos20. Now cos20 =2cos*0 — 1 and
P:%(m + o3+ 03) :%((71 +203) = 0y —%(01 — 03).
Therefore 0, = P + (01 — 03)(cos? 6 — 1).

Equations similar to (1.15)(1.17) apply to the
deviatoric stress.
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1.2. Deformation, strain

1.2.1. Definition of strain

Deformation refers to a change in the shape of a mate-
rial. Since homogeneous displacement of material points
does not cause deformation, deformation must be
related to spatial variation or gradient of displacement.
Therefore, deformation is characterized by a displace-
ment gradient tensor,

8u,-

d[/ = %

(1.24)
where y; is the displacement and x; is the spatial coor-
dinate (after deformation). However, this displacement
gradient includes the rigid-body rotation that has noth-
ing to do with deformation. In order to focus on defor-
mation, let us consider two adjacent material points
Po(X) and Qo(X + dX), which will be moved to P(x)
and Q(x +dx) after deformation (Fig. 1.4). A small
vector connecting Py and Qy, dX, changes to dx after
deformation. Let us consider how the length of these
two segments changes. The difference in the squares of
the length of these small elements is given by,

(dx)? — (dX)* = Z (dx;)? — Z(dX)
i=1
Z‘: (5-» ka Xy

&= 8‘c, ox

) dx;dx;. (1.25)
Therefore deformation is characterized by a quantity,

o OXi OX
E€ij :—< i Zax; (9){,-)

which is the definition of strain, €. With this defini-
tion, the equation (1.25) can be written as,

(1.26)

(d.\')z — (dX)z =2 Z Eij d.X,' dx,-.

iy

(1.27)

From the definition of strain, it immediately follows
that the strain is a symmetric tensor, namely,

E,‘j :E/,'. (128)
Now, from Fig. 1.4, one obtains,

clul- = dx,- s dX, (129)
hence

014,’ 8X,

e B 1.30
an I 8)6/ ( )

dx O(x +dx)
P(x)
a+di
174
0, (X +dX)
Py(X)

FIGURE 1.4 Deformation causes the change in relative positions
of material points.

Inserting equation (1.30) into (1.26) one finds,

_ 1 6u, Ouk 8141\
=5\ oy Z ox; 0x; |
This definition of strain uses the deformed state as a
reference frame and is called the Eulerian strain. One
can also define strain using the initial, undeformed
reference state. This is referred to as the Lagrangian
strain. For small strain, there is no difference between

the Eulerian and Lagrangian strain and both are
reduced to?

1 (ou oy
61/72 8x, 8x,- '

1.2.2.  Meaning of strain tensor

auj
8x,

(1.31)

(1.32)

The interpretation of strain is easier in this linearized
form. The displacement gradient can be decomposed
into two components,

Ou; 1 (O 1 Ou; 3 L (Ou;  Ou; (133)
Ox; 2 Ox;  Ox; 2\0x; Ox;) '
The first component is a symmetric part,

1 614,- (914,‘ _
Eij = E (a—\/ + E) =¢&ji (134)

which represents the strain (as will be shown later in
this chapter).

2 Note that in some literature, another definition of shear strain is used in
which e = du;/0x; + Ou;/Ox, for i # jand e; = Ou;/Ox; ; e.g., Hobbs
et al. (1976). In such a case, the symbol i is often used for the non-

diagonal (i # /) strain component instead of £



