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TRANSFORMATION METHODS FOR
NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS




FORWARD

The use of transformation methods to solve systems of partial differential
equations in the classical manner (i.e., by symmetry and similarity methods) is
severely limited by the Backlund theorem. This theorem states that a group or
pseudogroup of transformation that carries solutions of a system of partial
differential equations into solutions of that system is the prolongation of a group of
point transformation that acts on the Cartesian product of the domain space of the
independent variables and the range space of the dependent variables. One way to
circumvent this limitation is to discard the notion that the transformations form a
group or pseudogroup. This has been successfully pursued in published studies of
what are now termed Bicklund transformations. The purpose of this work is to

present several essentially different alternatives.

The approach we will take is primarily geometric in nature. Full use is
therefore made of E. Cartan’s exterior calculus. We will use the standard notation

of the exterior calculus:

A for exterior multiplication,
d  for exterior differentiation,
] for inner multiplication,

£ for Lie differentiation.

These operations lead to remarkable simplifications, both in the theory and in
actual calculations. The reader is referred to [1 - 7] for proofs of the following
results involving these operations. Let M be a given manifold of finite dimension,
le¢ o, 8 and 5 be exterior differential forms over M (i.e., elements of the
graded algebra A(M) of exterior differential forms over M), let¢ U and V be
vector fields over M (i.e., derivations on the ring AO(M) of C®° functions over
M), let f belong to AO(M), let a = degree of a, and let b = degree of 3. We
have



Vi
an(B+7) = arB + any, arB=(-1)2Pgra,

dla+B)=da+dB, dlarpB)=daAB + (-1)2ardf,
dda =0,

(U+V)Ja=Ula+V]a, Ul@+8)=Ula+U]4,
Ulf=0, Ul(@np)=(Ula)AB+(-1)*aA(U]H),

fya=Ulda+d(U]a), £y(a+p)=~Lya+£ys,
£y(V]a) =[U, V]Ja + V |£ja,

da= | o,
110 0Ja11

where [U, V] is the commutator or Lie product of the vector fields U and V
that is defined by [U, V]<f> = U<V<f>> — V<U<f>>, and where Ja+1 is a
smooth domain of dimension a+1 in M with boundary 8J aie] (remember that a

= degree of a).

Let A(M) denote the graded algebra of exterior differential forms over M
and let Ak(M) denote the module of exterior differential forms of degree k. The
ideal of A(M) that is algebraically generated by the exterior differential forms a,
B, ... is denoted by I{a, B, ...} (see [7], chapter 4). A collective symbolic name
for an ideal will usually be designated by use of an upper case script letter. Thus,
we write 3 = I{e, f, ...} for the ideal of A(M) that is algebraically generated by
the differential forms e, 3, .... An ideal 3 is said to be closed (ie,ds c 9)if
and only if dp € 3 for every n € J. An ideal 3 is said to be stable under
transport by a vector field V (i.e., £y3 C 9) if and only if £yn € 3 foreach 7
€ 9, in which case exp(s£y)3 C 3. Such vector fields are referred to as
isovectors of the ideal 3. A vector field V is said to be a Cauchy characteristic of
an ideal 3 (i.e., V|3 C 9)ifand onlyif V |y € 3 for each 7 € 3.
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If ®:N -+ M is a differentiable mapping, we write ®*:A(M) -+ A(N) for
the induced mapping of the graded algebras of exterior differential forms. Thus, if
®: N » M, then ®* maps any exterior differential form of degree k on M onto
an exterior differential form of degree k on Nj; that is, ®* maps in the direction

opposite to that of . We note in particular that
(® 0 ¥)*a = T* 0 &*a, ¥*(da)=d(®%a),
and that
*{(B4V) Ja} = V]2"a,

where ®,V denotes the image of the vector field V over M that is induced by
the map ® from the vector field V over N. A map @ is said to solve
(annihilate) an ideal 3 of A(M) (i.e., ®*9=0) if and only if ®*p =0 for each 7
€ 3. Since ideals of A(M) can be used to encode systems of partial differential
equations when M is chosen in an appropriate manner, a solving map of an ideal
provides a geometric presentation of a solution of a system of partial differential

equations.

A vector field V over M induces a flow Ty(s):M + M (ie, a 1-
parameter pseudogroup of point transformations of M) by solving the orbital
equations associated with the vector field V with generic initial data (see [7]).

This flow can be represented symbolically by its induced action on C%°-functions:
Ty (s)<f> = exp(s V)<f>
for any f in AO(M). We then have (see [7], chapter 4)
Tv(s)*a = exp(s £V)a

for any o € A(M), and hence we obtain the fundamental transport relation

(Ty(s)o ®)*a = * {exp(s£y/)a} .
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If V is an isovector of an ideal 3, then Tv(s)*S = exp(s£y)d C 3. Let ®bea
solving map of the ideal 3, that is ®*3J = 0, then (Tv(s)olb)*ﬂ =
®*{exp(s £y)3} = 0. Thus, if @ is a solving map of an ideal 9 and V is a
isovector of 3, then By(s) = Ty/(s)o® is a solving map of 9 for all s ina
neighborhood of s = 0.

This elementary result is the basis upon which classical transformation
methods (symmetry and similarity methods) for partial differential equations have
been developed. Chapters one and two present and extend these notions in the
context of contact manifolds of finite order. In particular, the Bicklund theorem
and its implied restrictions are explicitly established for systems of partial
differential equations with more than one dependent variable. Chapters one and
two thus act as a basis for the pursuit of alternatives to the Bicklund theorem that
are presented in the remaining chapters. The basic idea underlying these
alternatives is to use explicitly constructed systems of Cartan annihilating vector
fields of a subideal of the fundamental ideal for a given system of partial
differential equations. Such systems of vector fields can then be identified with
Cauchy characteristic vector fields of a modified subideal of the fundamental ideal.
The demand that this modified subideal be completely integrable leads to a
foliation of the underlying manifold M by n-dimensional submanifolds, where n
is the number of independent variables for the given system of PDE. Certain
leaves of these foliations can then be identified with the graphs of solution maps of
the fundamental ideal (i.e., with solutions of the given system of PDE) under
suitable additional hypotheses. In fact, it will be shown that every smooth (03)
solution of the given system of PDE can be realized as the graph of a leaf of a

foliation of M that is constructed in this manner.

A number of technical questions arise in this analysis that have to do with
the construction and properties of completely integrable subideals of appropriate
modifications of the fundamental ideal. These questions are answered in the last
chapter by the study of estended canonical transformations; namely,
transformations that map completely integrable horizontal ideals onto completely
integrable horizontal ideals. Such transformations are not restricted by the

Bécklund theorem. They thus provide an extensive body of new results of both



theoretical and practical importance.

We have tried to provide explicit examples throughout the text in order to
illustrate the scope and/or restrictions of the methods under discussion, or to
compare and contrast our results with those available in the current literature.

Whether these efforts prove to be adequate is left to the evaluation of the reader.

Citations of equations in a given chapter will be by equation numbers of
that chapter. A citation of an equation from a previous chapter will by indicated

by prefixing the equation number with the chapter number.
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CHAPTER 1

CONTACT MANIFOLDS, IDEALS, AND PARTIAL
DIFFERENTIAL EQUATIONS

The purpose of this chapter is to set an appropriate foundation for the study
of partial differential equations (PDE) by transformation-theoretic methods. One
of the central issues in such studies hinges on the mode of representation of the
PDE. Most of the current literature elects to represent the PDE through the
introduction of an appropriate jet bundle. In contrast, this study represents the
PDE by introducing a contact manifold of appropriate order. When the number of
dependent variables is greater than one, the two methods lead to the same groups
of symmetry transformations for a given system of PDE.  On the other hand,
when there is only one dependent variable, the group of symmetry transformations
computed by the jet bundle formalism for certain PDE is only a proper subgroup of
the group of symmetry transformations computed on the appropriate contact
manifold. In addition, the contact manifold formulation provides a particularly
clear means for understanding the limitations imposed by the Bicklund theorem,

and is suggestive of how to overcome these limitations.

1. THE SPACE OF INDEPENDENT VARIABLES

The principal topic of this monograph is the structure that can be associated
with the solution sets of systems of partial differential equations with n
independent variables. Since it is the structure of the solution sets rather than the
solutions themselves that is of interest, realization of the solution sets in terms of
the geometric structures of their graphs proves to be useful. Now, the geometry of

the graphs of solution sets of systems of PDE can and should be distinguished from



the geometry of the base manifold of the independent variables. It is therefore
sufficient to take the space of independent variables to be an open, simply
connected, n-dimensional set Dp that is an element of an atlas of open sets of an
n-dimensional differentiable manifold Mp. If, as is the case with most applications
in the quantified sciences, Mp = R®, then we can take Dj to be any open,
simply connected set in RZ. On the other hand, if My is a general n-dimensional
differentiable manifold, then our considerations are necessarily of a local nature
since they will apply only to one element of an atlas of My at a time. The
difficult global problems of piecing together the results between different elements
of an atlas of My will not be discussed here. In fact, it is precisely because My =
R® avoids these difficult problems associated with the intrinsic geometry of a
general n-dimensional differentiable base manifold, that M; = R is often
assumed in the study of PDE. We therefore take the domain set Dy of the
independent variables to be an open, simply connected subset of R® with a fixed
coordinate cover {xi |1 < i £ n}. Other coordinate covers can be introduced at

the convenience of the reader by standard techniques of differential geometry.

The volume element of Dy is denoted by u; that is
(1.1) p=dxl Adx2 A A dx®

is a basis for A™(Dy) in the coordinate cover {xi}. The natural basis for the
module T(Dp) of derivations of AO(Dn) (i.e., for vector fields on Dp) is given
by

1.2) =2, 1<i<n
in the coordinate cover {xi}. Any V € T(Dp) can thus be written as V =

vl(xj)ai , where the standard summation convention is adopted. It is then

immediate that

(1.3) g =0;]p, 1 <i<n

is a basis for An_l(Dn) (the conjugate basis) and exhibits the following



properties:

(1.4) du; =0, ddap=6lp.
Similarly,

(1.5) #ji=aleli=3jJ33J#=—l‘ij

exhibits the properties
(1.6) d”ji =0, dxk A Hyi = 6}(pi - 6}(pj ,

and hence {‘uji |1 £ j<i £ n} isa basis form An_Z(Dn) . Thus, if a €
A"~ }(Dy) and B € AP2(Dy), then

(L7 o = i), B = Jpied), b = bl
and
(1.8) da = (9ah)u, 48 = (@pY)u; .

2. GRAPH SPACE

The simplest geometric structure that can be associated with the solution
set of a system of PDE with N dependent variables is that of the graphs of a
solution set. We therefore introduce a graph space G = Dpj x RN  with local
coordinates {xi, q®|1 <i < n,1 £ a £ N} and realize the solution set in

terms of mappings from D, C R® into G.

Let @ denote a smooth map from an n-dimensional set J, C R® into G.

Such a map is said to be regular if

(2.1) *u £ 0
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throughout Jp. The collection of all regular maps of any J, C R™ into G is
denoted by

(2.2) RG={®:J,+G|®*u# 0}.
A regular map @ is realized by
(2.3) 3 |xd=gi(rX), % =¢Xr¥),

where {‘rk |1 < k < n} denotes the coordinates of points in J, C R™ relative

to a fixed coordinate cover of R®. Regularity of ® requires

*p = (8(x)/0(r))drl A~ Adr® £ 0,

9(x)

®, and the implicit function theorem shows that we can solve for the parameters

and hence

# 0 on Jy. The x’s thus remain independent on the range of

{Tk} in terms of the x’s, at least locally, so as to obtain & = mk(xi).

Composition of this map with the second of (2.3) yields the relations
(2.4) q% = ¢%(m*(x)) = 2%(x)

and hence any regular map from J, to G can also be realized by
(2.5) (i:dnCDn—bGlxi=xi, qo‘=<I>°‘(xi),

where dp is the image of J; in Dy under the map ®. From this point of view,
the parameters {Tk} are superfluous. They will be retained in the subsequent
discussions, however. This is because solution sets for systems of PDE are most
often obtained in the implicit parametric form (2.3), rather than in the explicit
form (2.5). For theoretical purposes, however, we may use the explicit
representation (2.5) without loss of generality, and this will often simplify many of
the detailed calculations with which we must contend.



3. THE FIRST ORDER CONTACT MANIFOLD

Studies of systems of PDE require that at least the first order partial
derivatives of the dependent variables appear as a new system of dependent
variables. This is most easily done by embedding graph space in a larger space.
The analysis will follow that presented in [7, 8].

Let K1 = G X RnN be an (n+N+nN)-dimensional space with the local
coordinate cover {x', %, 1 |1 < i < n,1 < & < N}. We refer to K& as a
first order contact manifold. Since K; has the product structure G x RO, Ky
can be viewed as a trivial fiber space with projection

(3.1) rq:Ky + G| (<, q% 1) o (), 0

and fibers RN over G. The new variables {r{*} of K, allow us to introduce N
nontrivial 1-forms

(3.2) C¥=dg®-1fdxl, 1 < a <N
which are referred to as the contact 1-forms of K,. Since
(3.3) ClACZA--ACN=dql nde®?A-ndN +--- £ 0,

the N contact 1-forms of Kl are independent. Further, an elementary
calculation based on (3.2) shows that each of the contact 1-forms has Darboux class
2n + 1 (see [7], chapter 4).

The fiber coordinates {r{"} of K; over G are arbitrary nN-tuples of real
numbers. They are identified with place holders for first partial derivatives
through the following construction. Let ®:J, » G | x = ¢i(‘rk), qQ% = ¢a(‘rk) be
a regular map. We lift ® to a map of J, -+ K, by the requirements

(34) $*C*=0, 1 < a < N;

that is, the section of K, that is generated by any regular section of G annihilates
the contact 1-forms of K;. A substitution of (3.2) into (3.4) yields the explicit



