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PREFACE

These Notes are intended for a 40-lecture-hour course in radiation heat
transfer. The emphasis is on developing the information and skills to formulate
and solve engineering heat transfer problems. The Notes are in two main parts.
After an introduction to the fundamental concepts of spectral and total
intensity and flux and fractional functions, the first part develops the subject
of surface-to-surface radiation heat transfer. Surface radiation characteristics
needed to incorporate radiation heat transfer rates into a first law of thermo-
dynamics heat balance are defined and related to fundamental physical
properties where appropriate via electromagnetic theory. The experimental
techniques developed to measure the characteristics are briefly described.

Then the engineering enclosure problem is addressed. Radiosity-irradiation
formulations, the network method, the mirror-image concept, and the powerful
Monte Carlo algorithm are described. The second part considers the subject

of radiation transfer in a participating medium. Gas radiation properties are
defined, and their measurement described. The engineering enclosure problem
with a well-stirred and thus homogeneous absorbing-emitting medium is treated
using radiosity-irradiation and network representations. The Monte Carlo
algorithm is extended to cover an absorbing-emitting-scattering medium that
can be homogeneous or inhomogeneous. Geometrical and spectral complexities
and simplifications are considered, primarily for the slab. Differential
formulations are briefly described. Narrow- and wide-band scaling for inhomo-
geneous molecular gases complete the second part concerned with gas radiation.
The Notes conclude with a short section on heat transfer by radiation and
conduction or convection.

To keep within the confines of a 40-hour course, the Notes keep to the
engineering radiation heat transfer discipline. Even so, there is an attempt
to develop two levels of problem-solving skills. The first level, of great
importance to practicing engineers, is what may be termed finite-element
thermal system analysis. This skill is emphasized first in the development, in
Sections 3 and 6, and in the early portion of Section 8. The second level is
differential-element or so-called exact analysis. While this level is almost totally
absent from Sections 3 and 6, the bulk of Sections 7 and 8 are devoted to it.

Grateful acknowledgment is made to Mrs. Phyllis Gilbert, who typed
the Notes. Professor Frank W. Schmidt reviewed the text for incorporation
into the Heat Exchanger Design Handbook and made several helpful suggestions.
Messrs. J. C. McMurrin and W. A. Menard helped considerably in proofreading
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the typescript. Mr. Patrick Hubbard assisted with the drafting of many of the
illustrations. The help of graduate students who participated in the radiation
heat transfer course at UCLA over the past several years is also gratefully
acknowledged.

D. K. Edwards
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PRINCIPAL SYMBOLS

a length between surface roughness asperities, um
A’Ai’Aj area, m2

Ac cross-sectional area, m2

A band absorption of kth band, cm

Ai band absorptance at kth band, dimensionless

At Van Driest's constant, 26

b thickness, m; also Mei and Squire constant, 3.4

B black body heat flux, W/m?, or the spectral black

body heat flux, W/m2 em~1 or W/m2 um; also the
rotational constant, cm”

B magnetic induction

c velocity of light, 2.997925x108 m/s

¢ first radiation constant, 3.7415)(10.16 J mz/s

<, second radiation constant, 1.4388 cm K

Ce skin friction coefficient

c specific heat at constant pressure, J/kg K

C* channel emissivity, dimensionless

d spectral line spacing, cm” !

D diameter, m; also optical collision diameter

D electric induction

E energy, J or eV

En exponential integral of order n

E electric field strength

f function of fractional function; also friction
factor

fe external fractional function, dimensionless
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K*

internal fractional function, dimensionless
collision frequency, 5‘1; also entry length factor
shape factor from area i to area j, dimensionless
transfer factor from area i to area j, dimensionless
statistical weight

normal irradiation of a beam, SIdS, W/m2

area-shape-factor product, AiFi—j’ m2

area-transfer-factor product A.&. .; also the area-
to-volume or volume-to-volume quantity, m2

Planck's constant, 6.6256x10 >0 Js
convective heat transfer coefficient
radiative heat transfer coefficient
specific enthalpy, J/kg

magnetic field strength

intensity, W/m2 sr;_also the spectral intensity,
W/m2 em™! sr or W/m* uym sr

black body intensity (units as above)
electric current density

absorptive index; also Boltzmann's constant, 1.38054x10 2> J/K

absorption coefficient, nl

: ; . . -1
extinction coefficient, m

scattering coefficient, m—1

thermal conductivity, W/m K; also the second
moment of the radiant intensity, also von Karman's
constant, 0.4

radiation conductivity, W/m K

radiation kernel



length, m

mean beam length, m

geometric mean beam length, m
mass, kg

mass flow rate, kg/s
refractive index

radiation conductivity to molecular conductivity
ratio, dimensionless

number density, n3

Nusselt number

pressure, N/m2 or atm
perimeter, m

dimensionless equivalent line broadening pressure
partial pressure of species i
Prandtl number

turbulent Prandtl number
heat flux, W/m2

radiosity, W/m2

irradiation, W/m2

heat energy, J

heat flow, W

absorption efficiency
extinction efficiency

scattering efficiency
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electrical resistivity, ohm cm

wall-layer thickness-to-hydraulic diameter ratio,
dimensionless

radius, m

turbulent Reynolds number

Reynolds number based upon hydraulic diameter
slant path length, m

integrated line intensity; also mean radiant
intensity

time, s; also optical depth, dimensionless
optical depth at band head, dimensionless
temperature, K

environmental temperature or equivalent mean tem-
perature, K

gas temperature, K
mean radiant temperature, K
wall temperature, K

sec 0; also cos B; also velocity in x-direction,
m/s

unit step function; also average velocity in x-
direction, m/s

cos 0

detector signal, volts

length coordinate, m; also mole fraction
density-path-length product, kg/m2 or g/m2
length coordinate, m

length coordinate, m

absorptivity; also thermal diffusivity, mz/s
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Q

. . - 2
integrated band intensity, cm 1/(g/m )
molecular thermal diffusivity, mz/s

line-width-to-spacing parameter; also dimension-
less temperature ratio

line half-width, cm_l; also Euler's constant
0.5772156. ..

thickness or half thickness, m; also vibrational
quantum number change

emissivity

heat exchanger effectiveness
eddy diffusivity for heat
eddy diffusivity for momentum

line-width-to-spacing parameter; also fin effec-
tiveness

polar angle
mass absorption coefficient, (kg/mz)'1
wavelength, um

cos 6

magnetic permeability

wavenumber, cm_l; also kinematic viscosity, mz/s
frequency, s~

molecular kinematic viscosity, m2/s
3.1415926...

reflectivity; also density kg/m3
absorber partial density, kg/m3
electric change density

8

Stefan-Boltzmann constant, 5.67x10 W/m2 k*
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electrical conductivity

surface roughness, um

transmissivity

optical depth at band head

wall layer transmissivity

azimuthal angle

hot band line spacing parameter, dimensionless
hot band intensity parameter, dimensionless
exponential band width, ——

albedo for single scatter

solid angle, sr
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1 INTRODUCTION

1.A Radiation Heat Transfer in Thermal Design. When

does one consider radiation heat transfer, and when does one
not? One does not consider radiation inside of a fluid that
is highly opaque to the source spectrum. In a fluid such as
water, the rédiation is merely a contributor to what we know
as thermal conductivity. Similarly one does not consider
radiation inside a fluid that is perfectly transparent to
the source spectrum. If there is no physical mechanism by
which the fluid can absorb energy from radiation passing
through it, then it follows from thermodynamics that it can-
not emit radiation either, and it cannot be either heated or
cooled by radiation. Such a fluid is said to be diatherma-
nous. The walls surrounding such a fluid, however, may ex-
change heat radiation, but only if they are not isothermal.
Thus one does not ordinarily consider radiation within the
passages of a heat exchanger containing oil, water, or air.
The first two are opaque. The last is diathermanous.

When two walls at different temperatures are in view of
one another or one wall is in view of a participating medium
(one neither opaque nor diathermanous) the radiation heat
flux (W/mz) tends to be high when A0T4 is high, where o is
the Stefan-Boltzmann constant 5.6697x10_8 W/m2 K4. When AT

is small compared to the absolute temperature level,AoT4 can

be written 40Tm3AT where Tm is the mean temperature level.



At 300 K the value for 40Tm3 is slightly over 6 W/m2 K (circa
1 Btu/hr ft2 R) on the same order as a natural convection
heat transfer coefficient. At Tm = 2000 K the value is near-
ly 300 times greater. From such a value, 1800 W/m2 K, one
can see why radiation contributes to film boiling heat trans-
fer. Radiation is important when temperatures are high,
distances are large (because convective heat transfer coef-
ficients go like passage size D as D_l/5 for turbulent flow
or D_1 for laminar flow), or under vacuum conditions when
convective heat transfer coefficients are low because of

the low fluid density.

1.B Thermodynamic Surfaces and Surface Systems. The

thermal designer needs to know surface heat fluxes adjacent
to the interface between phases. When one phase is highly
opaque, and the other is not, the opaque surface system
concept is used. Figure 1-1 depicts a surface system. The
s-surface lies just outside the highly opaque phase; the
u-surface lies just within it. The m-surface lies suffi-
ciently below the phase interface so that (1) no radiation
crossing the s and u surfaces is transmitted to the m-sur-
face, and (2) the radiation flux crossing the m-surface is
given by the radiation-diffusion equation and is included
with the conduction. For no flow through the surfaces and
negligible transient heat storage in the mass between the m

and u surfaces, one has
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FIGURE 1-1

The s, u, and m Thermodynamic Boundaries
for a Surface System



