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PREFACE

In this book the design of radio-frequency and microwave amplifiers and oscillators is
addressed. The focus will be on synthesis techniques (iterative, as well as analytical) for
designing linear amplifiers. Class A, class B, class AB, class E (not linear), class F, and
Doherty amplifiers will be considered. The design of small-signal amplifiers, including
low-noise amplifiers, will also be considered in detail.

Most of the material covered previously in [1, 2] is also included in this book.
Where necessary, the material has been revised and extended. The executable of a new
integrated version (LSM) of the main computer programs provided previously is also
licensed with this book. The new program is a Visual C++ 2008 program with a menu
driven interface. This program will run under Windows Vista and Windows XP. The
Fortran source code of the previous versions are also supplied with the book. Wideband
single-, as well as double-matching (complex source and complex load) problems can be
solved with LSM. A wizard for fitting a resistance (conductance) function to a set of
resistance versus frequency data points is also provided in LSM.

To be of real practical use at microwave and millimeter-wave frequencies, it is
essential to design a matching network with the pads required for any lumped components
in place. The transformation-Q technique described can easily be extended to provide this
capability. The same approach can be used to design mixed lumped/distributed matching
networks in which the lumped components are used to reduce the line lengths required.
Matching networks with spiral inductors and parallel-plate (MIM) capacitors can also be
designed directly by following this approach. In order to do this, accurate modeling of
spiral inductors and parallel-plate capacitors is required. Modeling of these components
will also be considered in this book.

A main feature of this book remains the power parameter approach introduced in
[2] to estimate the output power (1-dB compression point) of a linear amplifier without
resorting to nonlinear analysis techniques. Apart from the advantage that close to optimum
designs can be created in many cases without load-pull information or an accurate large-
signal model, the power parameter approach also serves to generate solutions that can be
refined in nonlinear circuit simulators.

The basic principle in the power parameter approach is that the output power of a
linear amplifier is limited by the maximum amplitudes of the current and voltage
associated with the intrinsic current-source in the transistor model [3]. The output power
extracted from a transistor can be current- and/or voltage-limited. Harmonics can
complicate or improve the situation. In a class-F amplifier, the square (ideal case) voltage
waveform allows the fundamental tone voltage-swing to be larger than the supply voltage
(minus the knee voltage), with a corresponding increase in power. The square waveform
also increases the efficiency.

A small-signal model, the dc operating point (at full power), and four boundary
lines on the dc or pulsed 7/V-curves of each transistor used are required in this approach.
The power parameters of the transistor can be derived from the small-signal model. All the
normal operations associated with the S-parameters and the noise parameters of a linear

XV



xvi Design of RF and Microwave Amplifiers and Oscillators

circuit (feedback, loading, cascading, changes in configuration) are also allowed with the
power parameters.

The external load line associated with any intrinsic load line can be found easily
by using the power parameter approach. With this capability in place, it is a simple matter
to generate load-pull contours for any linear amplifier stage, and to find the external
terminations associated with the required intrinsic harmonic terminations.

The idea that amplifier design essentially reduces to the design of specialized
impedance-matching networks is still prevalent. However, it was found that when more
demanding amplifiers, especially wideband amplifiers, are designed, the performance could
only be obtained by modifying the characteristics of the transistors used with frequency-
selective resistive networks (feedback and/or loading). In doing this, the excess in
capability (noise figure, gain) at the lower frequencies is exchanged for more desirable
characteristics in the passband of interest (stability, gain leveled in the passband, reduced
gain-bandwidth constraints, and correspondingly, improved VSWRs (voltage standing
wave ratios), and optimum noise/power and optimum match points closer to each other).
This preconditioning step will be referred to as device modification.

Because of the desensitizing effect of the resistive networks added, it was found
that amplifiers based on device modification and impedance matching are frequently first-
time right. It was also found that choosing the right transistors for an amplifier can be
critical in this respect. While transistors may seem to be equivalent on superficial
inspection, the performance obtainable during the device-modification stage may differ
greatly.

The normal approach to deciding the stability of an amplifier was also found to be
inadequate in some cases. Small changes in some circuits can easily change them from
inherently stable to potentially (or actually) unstable. Satisfactory results were obtained in
some cases when the stability analysis was extended to include calculation of the well-
known gain and phase margins used in feedback theory. Because the actual cause of the
oscillations is often the feedback loops introduced, it makes sense to investigate these loops
in addition to calculating the usual “black-box” stability factors. Knowing that a loop is
1 dB away from oscillation is also useful.

When narrowband high power amplifiers are designed it may not be realistic to add
modification networks to a transistor. Measures and techniques for designing conditionally
stable amplifiers are then required. Useful concepts like the maximum single-sided-
matched stable gain, and the maximum mismatched (double-sided) stable gain were
introduced in [4, 5]. Stability factors, introduced in [4-6], will indicate the range of
reflection coefficients (VSWRs) that can be tolerated before the potential instability of a
selected transistor results in oscillations. Note that these reflection coefficients are defined
in terms of the default normalization resistance used (50Q2). These stability factors can be
generalized by using the actual terminations of interest (generally, complex impedances)
as normalization impedances, as was done in [7].

The power parameters approach combined with loop gain calculations also lead
directly to the design of RF and microwave oscillators. A major shortcoming in the regular
approach to the design of oscillators is that only the negative resistance is considered
during synthesis. Clearly, clipping of the voltage and current is as important as in the case
of amplifiers. In the design approach proposed here the loop gain is controlled with the
load line presented to the transistor. An immediate advantage of a well-behaved load line
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is that the main nonlinear effect in the oscillator will be g,, compression. Assuming an
exponential saturation curve for the output power, the loop gain can then be controlled to
maximize the output power of the oscillator. If low phase noise is required, the loop gain
must be kept low in order to minimize upconversion of the flicker noise, and the loaded O
of the circuit must be maximized.

The material in this book is organized as follows.

Analysis and characterization of linear RF and microwave circuits with Y-, Z-, T-,
and S-parameters are considered in Chapter 1. Analysis by using flow diagrams is also
considered. Characterization and analysis of the noise and the power performance of
active linear circuits are considered in Chapter 2. Noise correlation matrices and the power
parameters are also covered, with the load-line considerations applying to the different
classes of linear power amplifiers. Doherty amplifiers are also considered.

Radio-frequency components are considered in Chapter 3. Basic inductor,
capacitor, and resistor models are considered, with the skin effect and the proximity effect.
The design of single-layer air-cored inductors, and inductors with magnetic cores, is also
investigated in detail. Coaxial cables and microstrip transmission lines are also considered
in this chapter.

Resonant circuits and the design of narrowband impedance-matching networks (L-,
T-, and Pl-sections) are investigated in Chapter 4. Coupled coils and conventional
transformers are covered in Chapter 5. Transmission-line transformers are widely used in
RF and UHF circuits and are covered in Chapter 6. The design of RF power amplifiers is
also considered in this chapter. Film resistors, single-layer parallel-plate capacitors
(including MIM capacitors), spiral inductors, and microstrip discontinuities are considered
in Chapter 7. Chapter 8 is devoted to the design of wideband impedance-matching
networks. The design of RF and microwave amplifiers and oscillators is considered in
Chapter 10. Cascade amplifiers, lossless feedback amplifiers, reflection amplifiers, and
balanced amplifiers are considered in this chapter.

This book was improved significantly by the feedback provided by the reviewer,
and [ would like to acknowledge his efforts and contributions.
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