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Preface

This volume is the result of a workshop, “Partial Differential Equations
and Fluid Mechanics”, which took place in the Mathematics Institute
at the University of Warwick, May 21st-23rd, 2007.

Several of the speakers agreed to write review papers related to their
contributions to the workshop, while others have written more tradi-
tional research papers. All the papers have been carefully edited in the
interests of clarity and consistency, and the research papers have been
externally refereed. We are very grateful to the referees for their work.
We believe that this volume therefore provides an accessible summary
of a wide range of active research topics, along with some exciting new
results, and we hope that it will prove a useful resource for both graduate
students new to the area and to more established researchers.

We would like to express their gratitude to the following sponsors of
the workshop: the London Mathematical Society, the Royal Society, via
a University Research Fellowship awarded to James Robinson, the North
American Fund and Research Development Fund schemes of Warwick
University, and the Warwick Mathematics Department (via MIRQW).
JCR is currently supported by the EPSRC, grant EP/G007470/1.

Finally it is a pleasure to thank Yvonne Collins and Hazel Higgens
from the Warwick Mathematics Research Centre for their assistance
during the organization of the workshop.

Warwick, James C. Robinson
December 2008 José L. Rodrigo
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Shear flows and their attractors
Mahdi Boukrouche

Laboratory of Mathematics, University of Saint-Etienne,
LaMUSE EA-3989, 23 rue du Dr Paul Michelon,
Saint-Etienne, 42023. France.
Mahd1i.Boukrouche@Quniv-st-etienne. fr

Grzegorz Lukaszewicz

University of Warsaw, Mathematics Department,
ul. Banacha 2, 02-957 Warsaw. Poland.
glukasz@mimuw. edu.pl

Abstract

We consider the problem of the existence and finite dimensionality
of attractors for some classes of two-dimensional turbulent boundary-
driven flows that naturally appear in lubrication theory. The flows admit
mixed, non-standard boundary conditions and time-dependent driving
forces. We are interested in the dependence of the dimension of the
attractors on the geometry of the flow domain and on the boundary
conditions.

1.1 Introduction

This work gives a survey of the results obtained in a series of papers
by Boukrouche & Lukaszewicz (2004, 2005a,b, 2007) and Boukrouche,
Lukaszewicz, & Real (2006) in which we consider the problem of the
existence and finite dimensionality of attractors for some classes of two-
dimensional turbulent boundary-driven flows (Problems I-IV below).
The flows admit mixed, non-standard boundary conditions and also
time-dependent driving forces (Problems IIT and IV). We are interested
in the dependence of the dimension of the attractors on the geometry
of the flow domain and on the boundary conditions. This research is
motivated by problems from lubrication theory. Our results generalize
some earlier ones devoted to the existence of attractors and estimates of
their dimensions for a variety of Navier—Stokes flows. We would like to
mention a few results that are particularly relevant to the problems we
consider.

Most earlier results on shear flows treated the autonomous Navier—
Stokes equations. In Doering & Wang (1998), the domain of the flow is

Published in Partial Differential Equations and Fluid Mechanics, edited by
James C. Robinson and José L. Rodrigo. (© Cambridge University Press 2009.



2 M. Boukrouche & G. Eukaszewicz

an elongated rectangle Q@ = (0,L) x (0,h), L > h. Boundary condi-
tions of Dirichlet type are assumed on the bottom and the top parts
of the boundary and a periodic boundary condition is assumed on the
lateral part of the boundary. In this case the attractor dimension can be
estimated from above by C—Z—Re:i/ 2, where c is a universal constant, and
Re = % is the Reynolds number. Ziane (1997) gave optimal bounds for
the attractor dimension for a flow in a rectangle (0,27L) x (0,27 L/«),
with periodic boundary conditions and given external forcing. The esti-
mates are of the form ¢y/a < dimA < ¢;/a, see also Miranville & Ziane
(1997). Some free boundary conditions are considered by Ziane (1998),
see also Temam & Ziane (1998), and an upper bound on the attrac-
tor dimension established with the use of a suitable anisotropic version
of the Lieb-Thirring inequality, in a similar way to Doering & Wang
(1998). Dirichlet-periodic and free-periodic boundary conditions and
domains with more general geometry were considered by Boukrouche &
Lukaszewicz (2004, 2005a,b) where still other forms of the Lieb-Thirring
inequality were established to study the dependence of the attractor
dimension on the shape of the domain of the flow. The Navier slip bound-
ary condition and the case of an unbounded domain were considered
recently by Mucha & Sadowski (2005).

Boundary-driven flows in smooth and bounded two-dimensional
domains for a non-autonomous Navier—Stokes system are considered
by Miranville & Wang (1997), using an approach developed by Chep-
yzhov & Vishik (see their 2002 monograph for details). An extension to
some unbounded domains can be found in Moise, Rosa, & Wang (2004),
cf. also Lukaszewicz & Sadowski (2004).

Other related problems can be found, for example, in the monographs
by Chepyzhov & Vishik (2002), Doering & Gibbon (1995), Foias et al.
(2001), Robinson (2001), and Temam (1997), and the literature quoted
there.

Formulation of the problems considered.
We consider the two-dimensional Navier—Stokes equations,
ug —vAu+ (u-V)u+Vp=0 (1.1)
and
divu =0 (1.2)
in the channel

Qoo ={z = (21,22) : —00 < 27 < 00, 0<x9<h(z1)},



Shear flows and their attractors 3

where the function h is positive, smooth, and L-periodic in z.
Let

Q={z=(21,22):0< 21 <L, 0<z3 <h(x1)}

and 00 = I’y UL, UT, where Iy and T'; are the bottom and the top,
and I'y, is the lateral part of the boundary of €.

We are interested in solutions of (1.1)—(1.2) in §2 that are L-periodic
with respect to z; and satisfy the initial condition

u(z,0) = ug(z) for z €, (1.3)

together with the following boundary conditions on the bottom and on
the top parts, I'g and I'y, of the domain Q.

Case I. We assume that
u=0 on I (1.4)
(non-penetration) and
u = Upe; = (Up,0) on Ty. (1.5)
Case II. We assume that
un=0 and 7-0(u,p)-n=0 on I}, (1.6)

i.e. the tangential component of the normal stress tensor o - n vanishes
on I'y. The components of the stress tensor o are

é)ui au]' o s
Uz] (U,p) v (3:33 + 8.731) pél]a ]- — Zv] — 31 (1 7)

where §;; is the Kronecker symbol. As for case I, we set
u = Upe; = (Up,0) on Ty. (1.8)
Case II1. We assume that

u=0 on Iy and (1.9)

u=Uy(t)er1 = (Up(t),0) on Ty, (1.10)
where Uy(t) is a locally Lipschitz continuous function of time t.
Case IV. We assume that

u=0 on TI. (1.11)
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We also impose no flux across I'g so that the normal component of the
velocity on I'( satisfies

u-n=0 on Iy, (1.12)

and the tangential component of the velocity u, on I'g is unknown and
satisfies the Tresca law with a constant and positive friction coefficient k.
This means (Duvaut & Lions, 1972) that on I'g

lon(u,p)| < k= u, = Up(t)ey and

|7y (u, p)| = k = 3 XA > 0 such that u, = Up(t)er — Aoy (u,p), (1.13)

where o, is the tangential component of the stress tensor on I'y (see
below) and

t — Up(t)er = (Up(t),0)

is the time-dependent velocity of the lower surface, producing the driving
force of the flow. We suppose that Uy is a locally Lipschitz continuous
function of time ¢.

If n = (n1,n2) is the unit outward normal to I'g, and 7 = (91,72) is
the unit tangent vector to I'y then we have

on(u,p) = o(u,p) - n— ((o(u,p) -n) - n)n, (1.14)
where 0 (u, p) is the stress tensor whose components are defined in (1.7).

Each problem is motivated by a flow in an infinite (rectified) journal
bearing Q x (—o0,+00), where I'y X (—00,+00) represents the outer
cylinder, and T'g x (—o0, 400) represents the inner, rotating cylinder. In
the lubrication problems the gap h between cylinders is never constant.
We can assume that the rectification does not change the equations as
the gap between cylinders is very small with respect to their radii.

This article is organized as follows. In Sections 1.2 and 1.3 we consider
Problem I: (1.1)—(1.5), and Problem II: (1.1)—(1.3), (1.6), and (1.8). In
Section 1.4 we consider Problem IIL: (1.1)-(1.3), (1.9), and (1.10). In
Section 1.5 we consider Problem IV: (1.1)—(1.3), and (1.11)—(1.13).

1.2 Time-independent driving: existence of global solutions
and attractors
In this section we consider Problem I: (1.1)—(1.5), and Problem II: (1.1)-
(1.3), (1.6), and (1.8) and present results on the existence of unique
global-in-time weak solutions and the existence of the associated global
attractors.
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Homogenization and weak solutions.
Let u be a solution of Problem I or Problem II, and set
u(x1,x2,t) = U(zz)er + v(z1, 22,t),
with
U(0) =Us, U(h(z1))=0, and U'(h(z1))=0, z;€(0,L).
Then v is L-periodic in x; and satisfies
v — VAU + (0.V)v + Uv,y, +(v)2U’e; + Vp =vU"e; (1.15)

and

dive =0,
together with the initial condition
v(x,0) = vo(z) = uo(x) — U(xz)e;.

By (v)2 in (1.15) we have denoted the second component of v. The
boundary conditions are

v=0 on I'guly
for Problem I, and
v=0 on Iy, vn=0 and 7-0(w)-n=0 on I,

for Problem II.

Now we define a weak form of the homogenized problem above. To this
end we need some notation. Let C7°(£2)? denote the class of functions
in C*°(Q4)? that are L-periodic in x;; define

V={veCP()?: divi=0, v=0 at TouT:}
for Problem I, and
V={ve C5°(Qoo)? : dive =0, Vg, =0, v-m =0}
for Problem II; and let
V = closure of V in H'(Q) x H'(Q), and
H = closure of V in  L*(Q) x L2(Q).

We define the scalar product and norm in H as

(u,v):/ﬂu(m)v(x)dz and |v| = (v,v)"2,
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and in V the scalar product and norm are
(Vu,Vv) and |Vv|? = (Vo, Vo).

We use the notation (-,-) for the pairing between V' and its dual V', i.e.
(f,v) denotes the action of f € V' onwv e V.
Let

a(u,v) =v(Vu,Vv) and B(u,v,w) = ((u-V)v,w).

Then the natural weak formulation of the homogenized Problems I and
IT is as follows.

Problem 1.2.1 Find
v e C([0,T); H) N L*(0,T;V)
for each T > 0, such that
%(v(t), ©) + a(v(t), ©) + B(v(t),v(t), ©) = F(v(t), ©),
for all® € V, and
v(z,0) = vo(x),
where
F(v,0) = —a(¢,0) - B(¢,v,0) — B(v,¢,0),
and £ = Ue; is a suitable background flow.

We have the following existence theorem (the proof is standard, see,
for example, Temam, 1997).

Theorem 1.2.2 There exists a unique weak solution of Problem 1.2.1
such that for allm, T, 0 < n < T, v € L?(n,T; H*(Q)), and for each
t > 0 the map vo — v(t) is continuous as a map from H into itself.
Moreover, there exists a global attractor for the associated semigroup
{S(t)}+>0 in the phase space H.

1.3 Time-independent driving: dimensions of
global attractors

The standard procedure for estimating the global attractor dimen-
sion, which we use here, is based on the theory of dynamical systems
(Doering & Gibbon, 1995; Foias et al., 2001; Temam, 1997) and involves



