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Interfacial Transport Phenomena



Preface

Transport phenomena is used here to describe momentum, energy,
mass, and entropy transfer (Bird er al. 1960, 1980). It includes
thermodynamics, a special case of which is thermostatics.  Interfacial
transport phenomena refers to momentum, energy, mass, and entropy
transfer within the immediate neighborhood of a phase interface, including
the thermodynamics of the interface.

In terms of qualitative physical observations, this is a very old field.
Pliny the Elder (Gaius Plinius Secundus, 23-79 A.D.; Pliny 1938) described
divers who released small quantities of oil from their mouths, in order to
damp capillary ripples on the ocean surface and in this way provide more
uniform lighting for their work. Similar stories were retold by Benjamin
Franklin, who conducted experiments of his own in England (Van Doren
1938).

In terms of analysis, this is a generally young field.  Surface
thermostatics developed relatively early, starting with Gibbs (1948) and
continuing with important contributions by many others (see Chapter 5).
Derjaguin and Landau (1941) and Verwey and Overbeek (1948) indicated
how London-van der Waals and electrostatic double-layer forces were to be
incorporated in continuum mechanics, now often referred to as DLVO
theory.  But prior to 1960, there were relatively few notable papers
concerned with the analysis of dynamic systems. Two stand out in my
mind. Boussinesq (1913) recognized the surface stress tensor and proposed
the constitutive equation that we now refer to as the Boussinesq surface
fluid model (Sec. 2.2.2). Unfortunately, he did not carry out an
experiment in which the effects of the interfacial viscosities could be clearly
recognized. While many studies of the surface viscosities followed, the
corresponding data analyses were not convincing. Brown et al. (1953)
appear to have been the first to demonstrate how the interfacial shear
viscosity could be measured in a limit where the viscous effects in the
adjacent phases could be neglected with respect to those in the interface
(Sec. 34.1).

More recently, interest in analysis has begun to flourish within this
area. Since many people have made important contributions, the best that I
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can do briefly is to indicate a few papers that have had particular meaning
for me. Scriven (1960) restated the Boussinesq surface fluid model in a
form more convenient for analysis. Burton and Mannheimer (1967;
Osbome 1968; Mannheimer and Schechter 1968, 1970; Pintar et al. 1971)
analyzed and demonstrated the deep channel surface viscometer, which is
still the recommended technique for measuring relatively small surface shear
viscosities (Exercise 3.4.1-3 and Sec. 3.5.1). Dussan V. and Davis (1974),
through both analysis and experiment, pointed out with unusual clarity the
contradictions to be reconciled in describing a moving common line (Secs.
129 through 1.2.11 and 1.3.9). By analyzing a thin film, Israelachvili
(1985) derived an expression for interfacial tension that is in excellent
agreement with experimental measurements, demonstrating that continuum
mechanics can be usefully extended to regions having molecular dimensions
(Exercise 4.1.4-3).

With the appearance of these papers, there were also questions. Were
the surface viscosities real physical parameters or were they artifacts of the
manner in which the surface viscometer was analyzed? Was the measured
value of the surface shear viscosity consequently dependent upon the
viscometer used to measure it? Was the introduction of the surface stress
tensor consistent with some general view of continuum mechanics? Could
the effects of the surface viscosities be observed in any situations judged to
be of practical importance? Was there really slip in the neighborhood of a
moving common line? Was it possible to successfully apply continuum
mechanics to the very thin films within the neighborhood of a common
line? In trying to answer questions like these for my students, I decided to
prepare this book.

This book is written both as a guide for those preparing for active
research in transport phenomena and as a reference for those currently
working in the area. The emphasis is upon achieving understanding starting
from the fundamental postulates. The dominant theme is the translation of
physical problems into mathematical terms.

I normally introduce my students to this book after they have
completed the first semester of lectures from my first book (Slattery 1981).
The text is self-contained, but I would prefer to see the reader already
conversant with analogous discussions for single phases. Although I have
lectured from this text here at Texas A & M, it is written with the intention
of being sufficiently complete to be used for self-study. This is the manner
in which most of my students have employed the text as it was being
written. All of the exercises have answers. Where appropriate, the reader
is led through an exercise, since the objective is not to test his
comprehension of the preceding text. The exercises are used as a literary
device to transmit information relevant to the text without overwhelming the
reader with additional details.

In many respects this book was a group effort. Many colleagues have
influenced and directed my thinking through conversations, by listening to
their talks at meetings, and by reading their papers. While I have not been
able to provide complete answers to all of their questions, I have been able
to finish this book only through the continued probing, encouragement, and
active help of my students. Jing-Den Chen and M. Sami Selim offered
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comments on portions of the final manuscript. My wife Bea and Brenda
Wilson cheerfully typed and retyped through many revisions over many
years, never questioning whether the book would finally be completed.
The final manuscript was prepared by Cheri Sandlin, with assistance from
Ruth Heeremans and Izora Brown. Alfred Li provided invaluable help and
support through the long months of proof reading, correcting the final
manuscript, and preparing indices. The Peregrine Falcon Company made
available a test copy of THE EGG BOOKMAKER INTERFACE (The
Peregrine Falcon Co., P. O. Box 8155, Newport Beach, CA 92658-8155),
in which the camera-ready copy was typed. David Adelson further
modified this test copy, pemmitting me to use boldface greek, boldface
script, boldface brackets (for jumps at interfaces), and boldface parentheses
(for jumps at common lines). Joel Meyer and Peter Weiss prepared the
final forms of the figures. Stephen H. Davis shared with me the original
photographs from his work with Elizabeth B. Dussan in Sec. 1.2.9.
Richard Williams and the David Samoff Research Center provided both the
previously published and the previously unpublished photographs from his
work that also appear in Sec. 1.29. My friends and colleagues at
Northwestern University, where most of this book was written between

1972 and 1989, gave me their patience and encouragement. Thanks to you
all.

College Station, Texas
July 10, 1990
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1
Kinematics and conservation of mass

This chapter as well as appendix A may be thought of as introductory
for the main story that I have to tell. In appendix A, I introduce the
mathematical language that we shall be using in describing phenomena at
phase interfaces. In this chapter, I describe how the motions of real
multiphase materials can be represented using the continuum point of view.
To bring out the principal ideas as clearly as possible, I have chosen to
confine my attention in these first chapters either to a material composed of
a single species or to a material in which there are no concentration
gradients. The conditions under which these results are applicable to
multicomponent materials will be clear later.

There are two basic models for real materials: the particulate or
molecular model and the continuum model. We all agree that the most
realistically detailed picture of the world around us requires that materials
be composed of atoms and molecules. In this picture, mass is distributed
discontinuously throughout space; mass is associated with protons, neutrons,
and electrons, which are separated by relatively large voids. In contrast,
the continuum model requires that mass be distributed continuously through
space.

The continuum model is less realistic than the particulate model, but
far simpler. Experience has shown that for many purposes the more
accurate details of the particulate model are not necessary. To our sight
and touch, mass appears to be continuously distributed throughout the water
which we drink and the air which we breathe. Our senses suggest that
there is a large discontinuity in density across the static surface defined by
our desk top or the moving and deforming surface of the ocean. The
problem may be analogous in some ways to the study of traffic patterns on
an expressway: the speed and spacing of the automobiles are important,
but we probably should not worry about their details of construction or the
clothing worn by the drivers.

The distinction between the particulate and continuum models should
be maintained. In the context of a continuum representation, one
sometimes hears a statement to the effect that a region is large enough to
contain many molecules ... but small enough to represent a point in space ...



