"HZ BoOKS

(Z3hR)

Prentice Hall Open Source Software Development Segie

, A Top-Down Approach for
4 x86 and PowerPC Architectures

/A

Claudia Salzberg Rodriguez
(3€) Gordon Fischer
Steven Smolski

low T b ORR A

¥ China Machine Press

= "R R B B K

inuXP B RE DK

(ZR3hR)

1 The Lmux Keme| Pr;mer
23 Top Down Approach for x86 and PcwerPC Archi

Claudia Salzberg Rodriguez
(%€) Gordon Fischer

K ' Steven Smolski : ’~ /

O ESTN &'

¥ China Mdchfhe Press

English reprint edition copyright © 2006 by Pearson Education Asia Limited and China
Machine Press.

Original English language title: The Linux Kernel Primer: A Top-Down Approach for x86
and PowerPC Architectures (ISBN 0-13-118163-7) by Claudia Salzberg Rodriguez, Gordon
Fischer, and Steven Smolski, Copyright © 2006 by Pearson Education, Inc.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing
as Prentice Hall PTR.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan,
Hong Kong SAR and Macau SAR).

A F5 5 3RS EN AR fy Pearson Education Asia Ltd. 28U Ol HARFE IR AR . K2
HIRRE BEFY, DRCAEM AT RSB A BANE.

IR F e AR FLRIEBEN (ANERE & BRI T R [& i e X))
HERIT

A4 H 4 Pearson Education (3A4:3# HRER) BOLPithinE, TAREEAE

R, @5,
FHEEME AR TRERNESH

ABHENEIZE . BF: 01-2006-3117
BEBERSmE (CIP) ¥

Linux Mg 4% () / (%) PEEMKL (Rodriguez C. S.) FH.
—dbxt: HUR Tl iRk, 2006.7

(2Ll AR 5%)

545 . The Linux Kernel Primer: A Top-Down Approach for x86 and PowerPC

Architectures
ISBN 7-111-19345-8

[.L.-- I.%--- IO Linux#{ERLH-¥C IV.TP316.89
A B RCIPRARF (2006) 50625575

U Tl AR AL (s ey 5N A2 % s ity 100037)

FALGEE: BIRE
A RE R R A RIENR - #riedEdb R kAT &IT
20064E7 A 1 AR5 1/ LR

170mm x 242mm - 40.25E05k
EMr: 75.0050

LA, AT, B, &, mAikkiTiiER
ArEHe:: (010) 68326294

LhRE BNE

XEFURE, FREKOFERBMMES R EARNIE, #05EREARF
FRIRA UG TE2WHEMY BERXENES, FEEEELRARBHAT
ZARMAKEN . UK. Rk EfdiRd, EEOLR SE T R ST
Gt WREHLAFHD T2 5 LA FIRE B AR BF B P BAT LR, b i 7 A i 2 8t
FHEENE, AOURER THIRAIERE , SR T 2 REY, BEEFAME, XAHE¥
AN, HAOEIA S EAE A G0 misoR .

LA, R BRI T, REMHENL LR BRE, XS WAASNE
KHEEY . X ENEEF LR IE, R e L BHEiE
BT L ERARRE. EREEEHEARLBERABE. ML RBPHIRT, %
PR 5% A0k B K AR SE LR R R AL+ 48 MR B A 2 B0 A IR 2 B S 2 4L
R, Sl —HEE SMRE TS THEEHL B R 3 3 E T BN & S0l A0 & SRR BRI 3 3h 1
g S, BIRAEMHRE —RARRRSh 2k,

UM Tl AR R S 85 B S 1 BT PR R RIS MR E W HF RS . [19984
THaG, R RIEhR TR fSURAE Tk . BIREIMEB EM . S JLEMRTMSE S,
FA'1 5Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan KaufmannZ f- 5 2 & 1
WA T RIFMAERR, WENBA IS E okt o 8%t Tanenbaum,
Stroustrup, Kernighan, Jim Gray%% KU £ K — A HMES, DL “HEIFHEAR" 34
EFREAR, BEEHEES] . R RER. KEAZERNE T, WIEAR TixENBR S
FIRE A .

UHEALBHEANT BIHR TR R T E AN EZ R DR, FRNNES R AR
THERERER, EARES S AR T BIR MBI TR i SRR Al e 1
HAeanfErp WIOEE, AREERARBOREAREF. €4, “TFELREAE B2
MﬁTﬁﬁ¢%ﬁ,ﬁ%#%ﬁﬁ%*ﬁﬁTﬁﬂmD@,#wwz%ﬁ%mﬁﬁﬁﬁ
MHMS B, Hi—PH 5% BITT T IRSHERM.

B 3 2 PHE R 90 2 58 B N3 S B BHR L, 80RO BN S A sk
MR RERE A — A BRI B . AL, STATRIMAS I HEMG HE, £ “EEHT
FRMRZ T R ARSI LS B RN 20, MR
M. MIRMIFREN “SHFRRBE" 5 R, SI3#2EBITHHFHSHE “Schaum’s
Outlines” RFIHR “@RBLMFAI/E RN, b THRIEX =ENBRIEN:, F
T AR AR FNEINIRS . EEA TG THhER ¥R, b3k, HEkE.
M FHE K. EHA%. EBREAY. MRKE. WK%, hEBH K%, B8R

v

kK. WEKBARY. PEARKS. EEMZBMRKF. Lrthbe A%, dil
KA. BOBCEE LK%, MR, AL TH#E. dPEEREELLNEBAEY.OZRE
NH S KFMBHHS A T BB & TSR E A F B H R “TRIEFERET, AR
i {4t 0k L FO Bl B

IX 2 P AR I R B AR B MR B RIS, AR N R BRI B R
G IBEFESITERN. XPIFLHEMHEAM. I T., Stanford, U.C. Berkeley, C. M.
U. SR LMKERM. AMUAE TRFRI. BB, BERK. HEIG RS
M. B, SRR, B TRE. BEYE. @5 5ME. BEEESFERNKRFTEN
Ll kg E, mASRARe—ANHAEFRIFEZF. FHL =+
FiAg. ARCH2tER L ek 76X S 5 Bl R 2 0 R ERIFRS I 2 T,
EELGRETRILPF AR EBRP BEEMAZE.

BURHITER . BB . —RAVEE. PEUER. BaENRE, XBREFEK
MrEBE FREMRIE, ERMNPVBERLRERE, MRBHELELEIATX —
KW HREERE . BB AR EEIRFS R A . A al WG E ik
A AT AR R I gl T4 IE, RAOTMERR Bk an T

M, F-hRf4:: hzjsj@hzbook.com
BEFHIE: (010) 68995264

AR MHE: AL e X E 5 1S
W B 4af: 100037

ERIBESERE

(Bl B)
RS
EF
=iy
o 223
&g
e
£ fa

L&A
X &
FEF
MR) 2%
=

R

A2 35

£ £
% 0
S
Rt 4
HA 4=

To my parents, Pablo & Maria, por ser trigo, escudo, viento y bandera.
—Claudia Salzberg Rodriguez

‘ 1o Lisa,
10 Jan & Hart.
—Gordon Fischer

To my dear friend Wes, whose wisdom and friendship I will cherish forever.
—Steven Smolski

Foreword

Here there be dragons. Medieval mapmakers wrote that about unknown or dan-
gerous places, and that is likely the feeling you get the first time you type:

cd /usr/src/linux ; 1s

“Where do I start?” you wonder. “What exactly am I looking at? How does it all
hang together and actually work?”

Modern, full-featured operating systems are big and complex. The number of
subsystems is large, and their interactions are many and often subtle. And while it’s
great that you have the Linux kernel source code (more about that in a moment),
knowing where to start, what to look at, and in what order, is far from self-evident.

That is the purpose of this book. Step by step, you will learn about the different
kernel components, how they work, and how they relate to each other. The authors
are intimately familiar with the kernel, and this knowledge shows through; by the
end of the book, you and the kernel will at least be good friends, with the prospect
of a deeper relationship ahead of you.

The Linux kernel is “Free” (as in freedom) Software. In The Free Software
Definition,' Richard Stallman defines the freedoms that make software Free (with a
capital F). Freedom O is the freedom to run the software. This is the most funda-
mental freedom. But immediately after that is Freedom 1, the freedom to study how
a program works. This freedom is often overlooked. However, it is very important,
because one of the best ways to learn how to do something is by watching other
people do it. In the software world, that means reading other peoples’ programs and

http://www.gnu.org/philosophy/free-sw.html

viii Foreword

seeing what they did well as well as what they did poorly. The freedoms of the GPL
are, at least in my opinion, one of the most fundamental reasons that GNU/Linux
systems have become such an important force in modern computing. Those free-
doms benefit you every moment you use your GNU/Linux system, and it’s a good
idea to stop and think about that every once in awhile.

With this book, we take advantage of Freedom 1 to give you the opportunity to
study the Linux kernel source code in depth. You will see things that are done well,
and other things that are done, shall we say, less well. But because of Freedom 1, you
will see it all, and you will be able to learn from it.

And that brings me to the Prentice Hall Open Source Software Development Series,
of which this book is one of the first members. The idea for the series developed
from the principle that reading programs is one of the best ways to learn. Today, the
world is blessed with an abundance of Free and Open Source software—whose
source code is just waiting (maybe even eager!) to be read, understood, and appre-
ciated. The aim of the series is to be your guide up the software development learn-
ing curve, so to speak, and to help you learn by showing you as much real code as
possible.

I sincerely hope that you will enjoy this book and learn a lot. I also hope that you
will be inspired to carve out your own niche in the Free Software and Open Source
worlds, which is definitely the most enjoyable way to participate in them.

Have fun!

Arnold Robbins
Series Editor

Acknowledgments

We would like to thank the many people without whom this book would not
have been possible.

Claudia Salzberg Rodriguez: 1 would like to note that it is oftentimes difficult,
when faced with a finite amount of space in which to acknowledge people, to dis-
tinguish the top contributors to your current and well-defined accomplishment
from the mass of humanity which has, in countless and innumerable ways, con-
tributed to you being capable of this accomplishment. That being said, I would like
to thank all the contributors to the Linux kernel for all the hard work and dedica-
tion that has gone into developing this operating system into what it has become—
for love of the game. My deepest appreciation goes out to the many key teachers
and mentors along the way for awakening and fostering the insatiable curiosity for
how things work and for teaching me how to learn. I would also like to thank my
family for their constant love, support, and for maintaining their enthusiasm well
past the point where mine was exhausted. Finally, I wish to thank Jose Raul, for gra-
ciously handling the demands on my time and for consistently finding the way to
rekindle inspiration that insisted on giving out.

Gordon Fischer: T would like to thank all the programmers who patiently
explained to me the intricacies of the Linux kernel when I was but a n00b. I would also
like to thank Grady and Underworld for providing excellent coding music.

We would all like to thank our superb editor, Mark L. Taub, for knowing what
was necessary to make the book better every step of the way and for leading us in
that direction. Thank you for being constantly and simultaneously reasonable,
understanding, demanding, and vastly accessible throughout the writing of this book.

We would also like to thank Jim Markham and Erica Jamison. Jim Markham we
thank for his early editorial comments that served us so well throughout the rest of
the writing of the manuscript. Erica Jamison we thank for providing us with edito-
rial feedback during the last version of the manuscript.

Our appreciation flows out to our reviewers who spent so many hours reading
and making suggestions that made the book better. Thank you for your keen eyes
and insightful comments; your suggestions and comments were invaluable. The
reviewers are (in alphabetical order) Alessio Gaspar, Mel Gorman, Benjamin
Herrenschmidt, Ron McCarty, Chet Ramey, Eric Raymond, Arnold Robbins, and

Peter Salus.

We would like to thank Kayla Dugger for driving us through the copyediting and
proofreading process with unwavering good cheer, and Ginny Bess for her hawk-
eyed copyedit. A special thanks goes to the army of people behind the scenes of the
copyediting, proofreading, layout, marketing, and printing who we did not get to
meet personally for making this book possible.

e

About the Authors

Claudia Salzberg Rodriguez works in IBM’s Linux Technology Center, develop-
ing the kernel and associated programming tools. A Linux systems programmer for
over five years, she has worked with Linux for Intel and PPC on platforms ranging

from embedded to high-performance systems.

Gordon Fischer has written Linux and UNIX device drivers for many low-level
devices, and has used Linux kernels in diverse enterprise settings across both Intel
and PPC platforms.

Steve Smolski has been in the semiconductor business for 26 years. He has
worked in the manufacturing, testing, and development of memory, processors, and

ASICS; has written applications and drivers for Linux, AIX, and Windows; and has
embedded operating systems. '

Preface

Technology in general and computers in specific have a magical allure that seems
to consume those who would approach them. Developments in technology push
established boundaries and force the re-evaluation of troublesome concepts previ-
ously laid to rest. The Linux operating system has been a large contributor to a tor-
rent of notable shifts in industry and the way business is done. By its adoption of
the GNU Public License and its interactions with GNU software, it has served as a
cornerstone to the various debates that surround open source, free software, and the
concept of the development community. Linux is an extremely successful example
of how powerful an open source operating system can be, and how the magic of its
underpinnings can hold programmers from all corners of the world spellbound.

The use of Linux is something that is increasingly accessible to most computer
users. With multiple distributions, community support, and industry backing, the
use of Linux has also found safe harbor in universities, industrial applications, and
the homes of millions of users.

Increased need in support and for new functionality follow at the heels of this
upsurge in use. In turn, more and more programmers are finding themselves inter-
ested in the internals of the Linux kernel as the number of architectures and devices
that demand support are added to the already vast (and rapidly growing) arsenal.

The porting of the Linux kernel to the Power architecture has contributed to the
operating system’s blossoming among high-end servers and embedded systems. The
need for understanding how Linux runs on the Power architecture

has grown, with companies now purchasing PowerPC-based systems intended to
run Linux. '

Preface xiii

Intended Audience

This book is intended for the budding and veteran systems programmer, the
Linux enthusiast, and the application programmer eager to have a better under-
standing of what makes his programs work the way they do. Anyone who has
knowledge of C, familiarity with basic Linux user fundamentals, and wants to know
how Linux works should find this book provides him with the basic concepts nec-
essary to build this understanding—it is intended to be a primer for understanding
how the Linux kernel works.

Whether your experience with Linux has been logging in and writing small pro-

grams to run on Linux, or you are an established systems programmer secking to
understand particularities of one of the subsystems, this book provides you with the

information you are looking for.

Organization of Material

This book is divided into three parts, each of which provides the reader with
knowledge necessary to succeed in the study of Linux internals.

Part I provides the necessary tools and understanding to tackle the exploration of
the kernel internals:

Chapter 1, “Overview,” provides a history of Linux and UNIX, a listing of the
many distributions, and a short overview of the various kernel subsystems from a
user space perspective.

Chapter 2, “Exploration Toolkit,” provides a description of the data structures
and language usage commonly found throughout the Linux kernel, an introduction
to assembly for x86 and PowerPC architectures, and a summary of tools and utili-
ties used to get the information needed to understand kernel internals.

Part I introduces the reader to the basic concepts in each kernel subsystem and
to trace the code that executes the subsystem functionality:

Chapter 3, “Processes: The Principal Model of Execution,” covers the imple-
mentation of the process model. We explain how processes come to be and discuss
the flow of control of a user space process into kernel space and back. We also dis-
cuss how processes are implemented in the kernel and discuss all data structures

Xiv Preface

associated with process execution. This chapter also covers interrupts and excep-
tions, how these hardware mechanisms occur in each of the architectures, and how

they interact with the Linux kernel.

Chapter 4, “Memory Management,” describes how the Linux kernel tracks and
manages available memory among various user space processes and the kernel. This
chapter describes the way in which the kernel categorizes memory and how it
decides to allocate and deallocate memory. It also describes in detail the mechanism
of the page fault and how it is executed in the hardware.

Chapter 5, “Input/Output,” describes how the processor interacts with other
devices, and how the kernel interfaces and controls these interactions. This chapter
also covers various kinds of devices and their implementation in the kernel.

Chapter 6, “Filesystems,” provides an overview of how files and directories are
implemented in the kernel. This chapter introduces the virtual filesystem, the layer
of abstraction used to support multiple filesystems. This chapter also traces the exe-
cution of file-related operations such as open and close.

Chapter 7, “Scheduling and Kernel Synchronization,” describes the operation of
the scheduler, which allows multiple. processes to run as though they are the only
process in the system. This chapter covers in detail how the kernel selects which task
to execute and how it interfaces with the hardware to switch from one process to
another. This chapter also describes what kernel preemption is and how it is exe-
cuted. Finally, it describes how the system clock works and its use by the kernel to

keep time.
Chapter 8, “Booting the Kernel,” describes what happens from Power On to
Power Off. It traces how the various processors handle the loading of the kernel,

including a description of BIOS, Open Firmware, and bootloaders. This chapter
then goes through the linear order in kernel bringup and initialization, covering all

the subsystems discussed in previous chapters.

Part III deals with a more hands-on approach to building and interacting with
the Linux kernel:

Chapter 9, “Building the Linux Kernel,” covers the toolchain necessary to build
the kernel and the format of the object files executed. It also describes in detail how

Preface xv

the Kernel Source Build system operates and how to add configuration options into
the kernel build system.

Chapter 10, “Adding Your Code to the Kernel,” describes the operation of
/dev/random, which is seen in all Linux systems. As it traces the device, the chap-
ter touches on previously described concepts from a more practical perspective. It
then covers how to implement your own device in the kernel.

Our Approach

This book introduces the reader to the concepts necessary to understand the ker-
nel. We follow a top-down approach in the following two ways:

First, we associate the kernel workings with the execution of user space opera-
tions the reader may be more familiar with and strive to explain the kernel work-
ings in association with this. When possible, we begin with a user space example
and trace the execution of the code down into the kernel. It is not always possible
to follow this tracing straight down since the subsystem data types and substruc-
tures need to be introduced before the explanation of how it works can take place.
In these cases, we tie in explanations of the kernel subsystem with specific examples
of how it relates to a user space program. The intent is twofold: to highlight the lay-
ering seen in the kernel as it interfaces with user space on one side and the hardware
on the other, and to explain workings of the subsystem by tracing the code and fol-
lowing the order of events as they occur. We believe this will help the reader get a
sense of how the kernel workings fit in with what he knows, and will provide him
with a framed reference for how a particular functionality associates to the rest of
the operating system. '

Second, we use the top-down perspective to view the data structures central to
the operation of the subsystem and see how they relate to the execution of the sys-
tem’s management. We strive to delineate structures central to the subsystem oper-
ation and to keep focus on them as we follow the operation of the subsystem.

Conventions

Throughout this book, you will see listings of the source code. The top-right cor-
ner will hold the location of the source file with respect to the root of the source
code tree. The listings are shown in this font. Line numbers are provided for the

. f:
XVi Preface

code commentary that usually follows. As we explain the kernel subsystem and how
it works, we will continually refer to the source code and explain it.

Command-line options, function names, function output, and variable names
are distinguished by this font.

Bold type is used whenever a new concept is introduced.

