

7N941,3 V

D·I·G·I·T·A·L TELEVISION

Edited by

C. P. Sandbank

Deputy Director of Engineering British Broadcasting Corporation

当书馆藏书

JOHN WILEY & SONS

Chichester · New York · Brisbane · Toronto · Singapore

Copyright © 1990 by John Wiley & Sons Ltd.

Baffins Lane, Chichester

West Sussex PO19 1UD, England

All rights reserved

No part of this book may be reproduced by any means, or transmitted, or translated into a machine language without the written permission of the publisher.

Other Wiley Editorial Offices

John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, USA

Jacaranda Wiley Ltd, G.P.O. Box 859, Brisbane, Queensland 4001, Australia

John Wiley & Sons (Canada) Ltd, 22 Worcester Road, Rexdale, Ontario M9W 1L1, Canada

John Wiley & Sons (SEA) Pte Ltd, 37 Jalan Pemimpin 05-04, Block B, Union Industrial Building, Singapore 2057

Library of Congress Cataloging-in-Publication Data:

Digital television / edited by C. P. Sandbank.

p. cm.

Includes bibliographical references (p.).

ISBN 0 471 92360 5

1. Digital television. I. Sandbank, C. P.

TK6678.D53 1990 621.388—dc20

89-28632

British Library Cataloguing in Publication Data:

Digital television.

- 1. Digital television equipment
- I. Sandbank, C. P.

621.388

ISBN 0 471 92360 5

Typeset by APS Ltd., Salisbury, Wiltshire Printed in Great Britain by Butler & Tanner Ltd., Frome and London

D·I·G·I·T·A·L TELEVISION

Preface

There are several ways of treating a subject like digital television. One way is to find an author who can personally cover the whole subject. It is hard to find someone who has both access to the detail of the wide range of the essential technologies and who also has the time to write a book. Another way is to invite experts on each of the major topics from various organisations (and countries) to contribute chapters on their own subject. This provides a broad coverage but may lack cohesion.

I have chosen an intermediate approach similar to that which I used on a previous occasion [6]. The material has been covered by a group of specialists who have been working closely together in this field for many years and have themselves pioneered some of the applications of digital techniques to broadcasting. We have therefore been able to compare notes as we went along and have tried to make sure that most areas are covered in a way that hangs together, at least as seen in terms of the requirements of one major broadcasting organisation.

The chapter on digital recording has been treated differently. This has been written by a distinguished broadcasting engineer from Yugoslavia who pulled together the activity in which representatives from industry and broadcasting collaborated on a worldwide basis for several years to produce a common approach to digital recording.

My thanks go to all who have contributed to the book. To the BBC for its enlightened attitude to research and development which enabled much of the work described to be applied successfully. To my co-authors who patiently responded to numerous requests for additional material as the contributions came together. To colleagues in other broadcasting organisations and in manufacturing industry from all over the world who provided material for inclusion in the book, and particularly those in the EBU, SMPTE, and CCIR.

I would like to gratefully acknowledge the helpful discussions with many colleagues in the BBC and to thank Miss Eileen Tasker, Mrs Ann Bennet and Mr Ted Hartwell for help with the manuscripts.

Finally my fond thanks go to my wife Audrey for allowing me to cover large amounts of surface area of our home with paper, particularly at a time when she needed some of the space for the manuscript of her own book!

C. P. SANDBANK, Broadcasting House, London.

Contents

Preface xiii

I The Emergence of Digital	Television	1
----------------------------	-------------------	---

C. P. Sandbank

Pulse Code Modulation (PCM) 2
The Stimulus to Use Digital Techniques 3
Standards 7
Digital components 8
Video interface 11
Recorder 13
Digital audio 13
Further Developments 14

High definition television 14
Digital techniques in domestic receivers 16
Digitally assisted television (DATV) 18

Analogue-to-digital and Digital-to-analogue Conversion and its Effect on Television Signals 21

V. G. Devereux

Fundamental Principles 21 Analogue-to-digital (A-D) conversion 21 Digital-to-analogue (D-A) conversion 23 Sampling and frequency characteristics 23 Input/output transfer characteristics 26 Methods of specifying quantising errors 26 Methods Used for A-D and D-A conversion 30 Picture Impairment Caused by Quantisation 37 Subjective tests on a single codec 40 Test on up to Eight 8-bit Codecs in Tandem with Sampling Close to Nyquist Limit 42 Discussion of Coding Parameters for use in Television Broadcasting 50 Bits per sample 50 Sampling frequency 51 Measurement of Performance of A-D and D-A Converters 52 Tolerances for Coding Inaccuracies 59 Specification of Filter Characteristics 61 Circuit Layout Techniques 61 Summary of Factors Affecting Performance of Video A–D and D–A Units 63

3 Semiconductor Storage of TV Signals 65

J. L. Riley

The need to store television signals 65

The developing semiconductor memory technology 65

Developing trends of the technology 74

Memory device choices 78

Features of Dynamic Semiconductor Memory 79

Design Philosophy 89

Store size 90

Multiplex factor 91

Store configuration 92

Early Designs 94

The 16K Generation 98

An experimental picture store using 18MHz sampling frequency 98

Microcomputer-controlled stores 103

Animation store buffers 106

The 64K Generation 109

A general purpose digital storage card 109

A compact random access picture store 117

Delay Applications 122

The 256K Generation 126

4 Digital Encoding and Decoding of Composite Television Signals 131

C. K. P. Clarke

Digital signal coding for use in studios 131

PAL decoding with subcarrier-locked sampling 133

PAL decoding with line-locked sampling 134

Subcarrier Generation From a Line-locked Sampling Frequency 135

Subcarrier phase generation 135

Quadrature subcarrier generation 139

Colour Encoding 141

Features of the PAL signal 141

Digital PAL encoding 144

NTSC encoding 153

Chrominance Demodulation 157

Decoder configurations 157

Line-locked sampling of composite signals 158

PAL chrominance demodulation 162

Signal relationships in decoders 170

Modulated chrominance processing techniques 174

NTSC demodulation 178

Chrominance-luminance Separation 181

Conventional decoding 181

The three-dimensional spectrum of composite signals 183

Multi-dimensional luminance and chrominance filters 187

Line-delay comb filters 188

Field- and picture-delay comb filters 193

Improved comb filters 195

Complex comb filter design 197

Performance comparison 204
Adaptive techniques 208
Decoders in Digital Studios 209
Multiple decoding and recoding 209
Clean coding system 210
The changeover to digital studios 213

5 Digital Filtering of Television Signals 215

J. O. Drewery

The Two-dimensional Fourier Transform 216 The Three-dimensional Fourier Transform 221 Sampling and the Discrete Fourier Transform 225 General Considerations of Digital Filters 230 Transversal Filters 232 Design of Transversal Filters 234 Hardware Considerations of Transversal Filters 240 Some Applications 244 Real-time aperture correction 245 Vertical chrominance filtering 251 Two-dimensional luminance filtering 254 Noise Reduction 257 Movement protection 263 Colour operation 276 The practical realisation 280 The prototype equipment 285

6 Interpolation 287

C. K. P. Clarke

Interpolation Theory 288 Signal sampling and reconstitution 288 Sample rate changing 293 Resampling 293 The interpolation process 295 Synthesis of aperture functions 298 Aperture quantisation 301 Fixed ratio interpolators 304 Time expansion and compression 311 Television Scan Conversions 317 Television scanning 317 Conversion methods 322 Principles of conversion 322 Performance of previous converters 335 Aperture synthesis 341 Optimised conversion apertures 350 HDTV conversions 362 Display improvement 372

7 Multipicture Storage 375

M. G. Croll

Requirements for Multipicture Storage Systems 375

Review of Suitable Storage Media and Technologies 376

Decoding to Provide a PAL Input to a Multiple Picture Store 381

Application of Electronic Multpicture Storage to a News Central Stills Library 382

Studio Stills Store 385

Semiconductor picture stores 387

Disc 388

Streaming tape drive 390

System computer hardware 391

System computer software 392

Picture processing 395

Television Animation Store 396

Operation of store 400

Recording pictures in real time on a parallel transfer disc drive 402

Record channel code 402

Available redundancy and bit-rate reduction 406

Error protection 407

Data format 409

Performance 410

Animation of Logos 412

LaserVision optical disc with data instead of f.m. modulated video 412

Solid state implementation of animated logo 418

8 Digital Video Tape Recording 423

A. Todorovic

The Role of the VTR 423

Limitations of Analogue Recording 423

Potentialities of Digital Recording 425

Specific Problems of Digital Video Recording 429

Digital Video Tape Recording Format 433

The Cassette 435

Track Pattern 437

Recording of Digital Video Signals 442

Recording of Digital Audio Signals 449

Recording of Synchronisation Signals 453

Channel Coding 455

Recording of Cue Audio Signals 455

Recording of Control Signals 456

Recording of Time-code Signals 456

Commercial Products 457

9 Electronic Graphics for Television 465

N. E. Tanton

The Effects of Scanning 467

Sampling theory 467

Scanning as sampling 467

Scanning artwork 469

Combining scanned text with pictures 471 Two-level electronic images 472 Multilevel digital images 472 The Spectral Contributions of Picture Detail 473 Stationary detail 473 Moving detail 473 The Causes of Aliasing 474 Picture frequency flicker (interlace twitter) 475 Stepping or 'jaggies' 475 Movement portrayal 476 Filtered Text Images 480 Source of data 480 Choice of filter function 481 Practical Investigation 482 Filters with monotonic step responses 483 Filters with non-monotonic step responses 486

Use of Filtered Text for Teletext and VDUs 494 Applications of Electronic Graphics 496

10 Telecine and Cameras 499

Combined filtering 490

L. Childs

Types of camera 500
Types of telecine 501
Areas where digital processing may bring benefits 505
Digital Techniques in Telecine Machines 508
A digital telecine processing channel 508
Sequential-to-interlace conversion 518
Movement interpolation 522
Telecine control systems 524
Scanning control and variable speed operation 524
Automatic colour correction 526
Digital Techniques in Cameras 529
A digital camera processing channel 529
Camera control systems 530
Use of solid state area arrays in television cameras 531

11 Digital Chroma-key and Mixer Units 539

V. G. Devereux

Principles of Operation 540

Key generator 540

Foreground suppressor 542

Key processor 544

Mixer 546

Filtering and sample rate changing 546

Other Key Facilities 548

Keying from 12:4:4 YC_BC_R signals 549

Luminance keying 550

Garbage matte 550

Stored key signals 551
Foreground-background cross-fade 551
Problems Associated with Digital Processing 552
Aliasing distortion 552
Quantising distortion and use of error feedback 553
Adjustment of Controls 556

12 Digital Video Interfaces 559

D. J. Bradshaw

Interface signal format 560 Synchronisation 561 The Bit-parallel Interface 564 Electrical format 564 Mechanical implementation 566 Experience with the parallel interface The Bit-serial Interface 568 Coding strategy 568 The 8-bit-9-bit block code 569 Control of the d.c. component 570 The 8-bit-9-bit map 570 Link synchronisation 570 Scrambled 10-bit interface 575 Electrical format 576 Mechanical implementation 576 Experience with the bit-serial interface 576 Ancillary Data Channel 577 Application of Digital Interfaces in Studios 577

13 The Bit-rate Reduction of Television Signals for Long Distance Transmission 583

N. D. Wells

Sample Rate Reduction 585

Chrominance components 589 Luminance component 592 Subsampling of PAL signals 593 Other forms of comb filter 597 DPCM Coding 598 Linear prediction 599 Adaptive prediction 601 Non-linear quantisation 601 Minimum mean square error (MMSE) design method 602 Graphical design method 603 Adaptive quantisation 604 Stability of (non-adaptive) DPCM decoders and coders 605 Transform Coding for Bit-rate Reduction 610 The discrete cosine transform 611 Two-dimensional transform coding 615 Bit-rate reduction in the transform domain 617

Hybrid transform/DPCM coding 620

Variable-Length or Entropy Coding 621

Construction of typical variable-length codes 622

Entropy 623

Practical considerations 625

Vector Quantisation 628

Codebook generation 630

Vector quantiser performance 631

References 633

Index 643

1

The Emergence of Digital Television

C. P. Sandbank

INTRODUCTION

In these days when electronics is having such an impact on our lives, mostly by means of devices based on digital circuits using signals in binary form, it may seem surprising that broadcasting, one of the 'founder members' of the electronics industry, is still based essentially on analogue equipment. The relatively late arrival of digital techniques to television can be ascribed to three main factors:

- (i) Semiconductor technology has only recently become available in a form compatible with the demanding requirements of television signal processing.
- (ii) Analogue electronics are doing a good job in most areas of the broadcasting chain, namely the studios; the distribution networks; the transmitters and the receivers.
- (iii) In broadcasting, change is inhibited by the need to be compatible with what has gone before and what is likely to come next.

Indeed, under these circumstances it is remarkable that the use of digital techniques in broadcasting is already quite extensive and increasing rapidly. This is because digital means are often the only practical and cost-effective way of providing some of the new electronic processes which enhance the production of programmes and have become an essential part of the art of television. In the near future, digital techniques will also become essential for bandwidth reduction in distribution and for domestic receiver enhancements. Eventually we will see digital signals in broadcast and recorded form replacing analogue as a means of delivering TV to the public.

The purpose of this chapter is to give the reader some background to the emergence of digital television. It should also help those who prefer to dip into the chapters for items of specific interest to find their way around the book. The subjects of the chapters are not dealt with in chronological order of the developments or in relation to their position in the TV production chain. The order has been chosen with the aim of treating as early as possible subjects which may provide useful background for the subsequent chapters.

PULSE CODE MODULATION (PCM)

Digital television has its roots in PCM which is now accepted throughout the world as the standard means of encoding signals for most modern communications systems. Although this rapid transition from analogue to digital communication has taken place in the relatively recent history of such techniques as microwave transmission or even satellites, it is interesting to note that its invention predates both by a long time. PCM was invented by Alec Reeves in 1937 but it was not until 30 years later that semiconductor devices became available which made PCM a viable proposition for encoding of speech signals. (It was during this period that the author had the good fortune to be able to count Alec Reeves among his close colleagues.) By the time technology made PCM attractive for extensive application to TV a total of 50 years had elapsed since its invention.

It is all the more remarkable that the very detailed description in Reeves' patent [1], published in the UK in 1939, was so far-sighted that it could serve as an accurate description of many of the concepts treated in this book. The aspects addressed in the patent range from quantisation and encoding to consideration of the noise and bandwidth characteristics of the transmission media right through to the relative merits of parallel and serial interfaces—a subject still giving rise to hot international debate in 1989!

The work of Reeves, though directly relevant to current digital TV systems, since it only required modern semiconductor devices to implement PCM as he described it, was motivated by the desire to solve the problems of voice transmission. It is therefore, in the context of this book, worth drawing attention to another much earlier patent granted to Rainey [2] in 1926 which proposed a means of scanning a picture for transmitting facsimiles or 'telephotography' by means of galvanometers, photocells and relays to produce 'a code combination of electrical impulses'. Although this patent is hardly relevant to the systems described in this book Rainey clearly envisaged the concept of encoding an image in digital form when he first filed his patent in 1921.

PCM is well dealt with in the literature [3]. Suffice it to say, at this stage, it provides a means of describing, or encoding, the continuous analogue waveform as a stream of binary numbers. In this form it is more suited for processing by modern electronic circuitry and more amenable to the application of techniques for efficient retention of essential information and minimising corruption by interfering signals (e.g. noise). To produce the PCM signal, the analogue waveform is first sampled periodically to determine its height at each sample time. The higher the sampling frequency the more accurate is this process and, in the limit, an infinite sampling frequency would describe the original waveform exactly. In practice, the waveform of the signal from, say, a TV camera contains a finite amount of information and there is no advantage in choosing a higher sampling frequency than required to convey this limited information to the accuracy required.

The second step in producing the PCM signal is to assign a numerical magnitude to the amplitude measured at each sample period. Again, if this were done with infinite accuracy, the original analogue waveform could eventually be recovered exactly. However, for the same reasons that an excessive sampling frequency is pointless, the precision with which the amplitude of each sample is described (or, in the language of PCM, the number of discrete levels chosen for the quantisation process) should not be

higher than needed to convey the essential information about the image which the TV camera is capable of producing.

The processes of sampling and quantisation are described in Chapter 2 dealing with analogue-to-digital conversion. Having converted the original analogue TV signal into PCM, it is then in a form suitable for signal processing by semiconductor circuits which can now be fabricated as large-scale integrated (LSI) devices capable of carrying out complex functions at speeds commensurate with the high information rate of a TV signal. Of equal importance is the fact that the PCM signal facilitates the presentation of the signal in a form similar to that in which the data is processed and stored in a computer. This has enabled the sophisticated hardware developed for the Information Technology industry to be readily adapted for use in television systems.

THE STIMULUS TO USE DIGITAL TECHNIQUES

The need to provide some memory, which is essential for any basic signal processing, provided the strongest initial stimulus to the development of digital techniques. The requirement which first drew attention to this was the need to convert from one TV scanning standard to another. Before the days of video recording or satellites the normal means of international programme exchange was by the use of 16 mm or 35 mm film shot at 24 frames per second. There was thus no need for standards conversion as the film is speeded up slightly to 25 frames per second and scanned at the required transmission standard using the telecine techniques described in Chapter 10.

To a large extent film has remained the basic medium for worldwide programme distribution. However, for a long time there has been a need for scan conversion. It started with the original cross-channel microwave links connecting French and British TV in 1950 when the problem of exchanging programmes made with different scanning standards first emerged [4]. Here standards conversion was simply carried out by pointing a camera at a screen and relying on the inherent memory and integration times of the display and camera devices to perform the basic functions of interpolation described in Chapter 6. When exchange of programmes produced at 50 Hz/625 lines and 60 Hz/525 lines became possible in electronic form, the desirability to achieve electronic standards conversion became evident [5]. Figure 1.1 illustrates the technological difficulty of providing the required memory for a standards conversion before the availability of semiconductor storage in digital form. The device is a precision cut block of quartz with reflecting facets in which the TV signal travels back and forth as an ultrasonic beam until, after passing through 12 such blocks, it has traversed a path length equivalent in time to two fields of television!

The rapid progress made in the technology of semiconductor digital storage described in Chapter 3 is the main reason for the transition from analogue to digital television. It is interesting to note that ten years after the first use of the device in Figure 1.1, it was attractive to use digital semiconductor field stores even at a cost of £3K per field and requiring a power of over 200 W. Today, field stores are feasible using a few chips costing less than £10 and requiring a few milliwatts of power. Soon it may be possible to use three-dimensional solid state memory where the capacity will be measured not in fields, but in minutes of television.

Figure 1.1 Quartz ultrasonic 3.3 ms delay line. It weighed 2.3 kg and 12 of these were used for the picture store in early standards converters

Initially the main application for delay was for timing correction. The two main requirements for this were firstly to correct for the timing imperfections introduced by slight variations in the speed of the tape past the play-back heads in the recorder, and secondly to enable signals arriving from different sources to be locked together in synchronism.

Quite soon after the simple applications of digital delays, more sophisticated digital signal processing techniques began to be introduced to television. A notable example was the use of the digital filtering methods discussed in Chapter 5 for noise reduction at the network output. Also at this time, digital communications were becoming established at bit rates sufficient for the transmission of TV by wide-band media such as optical fibres [6] and satellites [7]. This stimulated the development of digital encoding of TV for transmission, including bandwidth reduction methods, many of which are discussed in Chapter 13 and are only feasible by digital means.

By the end of the 1970s digital TV had become an essential part of production for operational reasons, some of which were mentioned above. The impact on programmes would not have been obvious to the public or even to producers. However, at this time the techniques were beginning to be applied to the art of programme making.

Initially, fairly basic use was made of memory. Producers with access to the stores in the synchronisers started 'grabbing' an occasional frame from the camera and holding it still to heighten dramatic effect. Then there was a combination of storage and image detection used, for instance, by 'teletrack' device [8] used to display the trajectory of objects, such that shown in Figure 1.2. This system detects the position of a moving object in any field by comparing the signal with a stored reference field (e.g. the empty snooker table). The difference represents one 'snapshot' of the moving object. If this is done several times as the object moves about on a stationary background these snapshots of the moving object can all be written into a store and finally superimposed on the original background for display.

Perhaps the digital equipment which first made a great visual impact was that which used a combination of the storage and interpolation processes described in Chapters 3 and 4 to achieve 'special video effects'. The TV industry had long been able to superimpose one image on another either by the traditional means of back projection or by analogue colour separation overlay (see Chapter 11 for an explanation of this process

Figure 1.2 'Teletrack', one of the first special effects units to make use of solid state picture stores