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Preface

The area: Chaos in Partial Differential Equations, is at its fast developing
stage. Notable results have been obtained in recent years. The present book aims
at an overall survey on the existing results. On the other hand, we shall try to
make the presentations introductory, so that beginners can benefit more from the
book.

It is well-known that the theory of chaos in finite-dimensional dynamical sys-
tems has been well-developed. That includes both discrete maps and systems of
ordinary differential equations. Such a theory has produced important mathe-
matical theorems and led to important applications in physics, chemistry, biology,
and engineering etc.. For a long period of time, there was no theory on chaos in
partial differential equations. On the other hand, the demand for such a theory
is much stronger than for finite-dimensional systems. Mathematically, studies on
infinite-dimensional systems pose much more challenging problems. For example, as
phase spaces, Banach spaces possess much more structures than Euclidean spaces.
In terms of applications, most of important natural phenomena are described by
partial differential equations - nonlinear wave equations, Maxwell equations, Yang-
Mills equations, and Navier-Stokes equations, to name a few. Recently, the author
and collaborators have established a systematic theory on chaos in nonlinear wave
equations.

Nonlinear wave equations are the most important class of equations in natu-
ral sciences. They describe a wide spectrum of phenomena — motion of plasma,
nonlinear optics (laser), water waves, vortex motion, to name a few. Among
these nonlinear wave equations, there is a class of equations called soliton equa-
tions. This class of equations describes a variety of phenomena. In particular,
the same soliton equation describes several different phenomena. Mathematical
theories on soliton equations have been well developed. Their Cauchy problems
are completely solved through inverse scattering transforms. Soliton equations are
integrable Hamiltonian partial differential equations which are the natural coun-
terparts of finite-dimensional integrable Hamiltonian systems. We have established
a standard program for proving the existence of chaos in perturbed soliton equa-
tions, with the machineries: 1. Darboux transformations for soliton equations, 2.
isospectral theory for soliton equations under periodic boundary condition, 3. per-
sistence of invariant manifolds and Fenichel fibers, 4. Melnikov analysis, 5. Smale
horseshoes and symbolic dynamics, 6. shadowing lemma and symbolic dynamics.

The most important implication of the theory on chaos in partial differential
equations in theoretical physics will be on the study of turbulence. For that goal,
we chose the 2D Navier-Stokes equations under periodic boundary conditions to
begin a dynamical system study on 2D turbulence. Since they possess Lax pair
and Darboux transformation, the 2D Euler equations are the starting point for an
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analytical study. The high Reynolds number 2D Navier-Stokes equations are viewed
as a singular perturbation of the 2D Euler equations through the perturbation
parameter € = 1/Re which is the inverse of the Reynolds number.

Our focus will be on nonlinear wave equations. New results on shadowing
lemma and novel results related to Euler equations of inviscid fluids will also be
presented. The chapters on figure-eight structures and Melnikov vectors are written
in great details. The readers can learn these machineries without resorting to other
references. In other chapters, details of proofs are often omitted. Chapters 3
to 7 illustrate how to prove the existence of chaos in perturbed soliton equations.
Chapter 9 contains the most recent results on Lax pair structures of Euler equations
of inviscid fluids. In chapter 12, we give brief comments on other related topics.

The monograph will be of interest to researchers in mathematics, physics, engi-
neering, chemistry, biology, and science in general. Researchers who are interested
in chaos in high dimensions, will find the book of particularly valuable. The book is
also accessible to graduate students, and can be taken as a textbook for advanced
graduate courses.

I started writing this book in 1997 when I was at MIT. This project continued
at Institute for Advanced Study during the year 1998-1999, and at University of
Missouri - Columbia since 1999. In the Fall of 2001, I started to rewrite from the
old manuscript. Most of the work was done in the summer of 2002. The work was
partially supported by an AMS centennial fellowship in 1998, and a Guggenheim
fellowship in 1999.

Finally. I would like to thank my wife Sherry and my son Brandon for their
strong support and appreciation.
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CHAPTER 1

General Setup and Concepts

We are mainly concerned with the Cauchy problems of partial differential equa-
tions, and view them as defining flows in certain Banach spaces. Unlike the Eu-
clidean space R™, such Banach spaces admit a variety of norms which make the
structures in infinite dimensional dynamical systems more abundant. The main
difficulty in studying infinite dimensional dynamical systems often comes from the
fact that the evolution operators for the partial differential equations are usually
at best C” in time, in contrast to finite dimensional dynamical systems where the
evolution operators are C! smooth in time. The well-known concepts for finite di-
mensional dynamical systems can be generalized to infinite dimensional dynamical
systems, and this is the main task of this chapter.

1.1. Cauchy Problems of Partial Differential Equations

The types of evolution equations studied in this book can be casted into the
general form,

(1.1) XQ =G(Q,0.Q,...,0Q) ,
where t € R!' (time), 2 = (z1,....2,) € R*, Q = (Q1,...,Qm) and G =
(G1,...,G) are either real or complex valued functions, and ¢, m and n are

integers. The equation (1.1) is studied under certain boundary conditions, for ex-
ample,

e periodic boundary conditions, e.g. @) is periodic in each component of x
with period 27,
e decay boundary conditions, e.g. Q — 0 as x — oo.
Thus we have Cauchy problems for the equation (1.1), and we would like to pose
the Cauchy problems in some Banach spaces H, for example,

e 7 can be a Sobolev space H*,
e H can be a Solobev space HY  of even periodic functions.

We require that the problem is well-posed in H, for example,

e forany Qo € H, there exists a unique solution Q = Q(t, Qo) € C°[(—oc,0); H]
or C°[[0; 00), H] to the equation (1.1) such that Q(0, Qo) = Qo,

e for any fixed ty € (—o0,00) or [0,00), Q(to, Qo) is a C” function of Qy,
for Qo € ‘H and some integer r > 0.

Example: Consider the integrable cubic nonlinear Schrodinger (NLS) equa-
tion,

(12) 19t = qzo + 2 [' q |:2 _w2] q,

1



2 1. GENERAL SETUP AND CONCEPTS

where i = /—1,t € R', z € R, ¢ is a complex-valued function of (¢,z), and w is a
real constant. We pose the periodic boundary condition,

g(t,z+1) =q(t,x).

The Cauchy problem for equation (1.2) is posed in the Sobolev space H' of periodic
functions,

o= 0= 00| et 1 =aw). g€ mly e

Sobolev space H' over the period interval [0, 1]} ,

and is well-posed [38] [32] [33].

Fact 1: For any Qo € H, there exists a unique solution Q@ = Q(t,Qq) €
C°[(—00,00),H] to the equation (1.2) such that Q(0, Qo) = Qo.

Fact 2: For any fixed ty € (—o00,0), Q(to, Qo) is a C? function of Qq, for
Qo € H.

1.2. Phase Spaces and Flows

For finite dimensional dynamical systems, the phase spaces are often R* or C".
For infinite dimensional dynamical systems, we take the Banach space H discussed
in the previous section as the counterpart.

DEFINITION 1.1. We call the Banach space H in which the Cauchy problem
for (1.1) is well-posed. a phase space. Define an operator F! labeled by t as

Q(t. Qo) = F'(Qo);

then F' : H — H is called the evolution operator (or flow) for the system (1.1).

A point p € H is called a fized point if F!(p) = p for any t. Notice that here
the fixed point p is in fact a function of z, which is the so-called stationary solution
of (1.1). Let ¢ € H be a point; then ¢, = {F(q),for all t} is called the orbit with
initial point g. An orbit £, is called a periodic orbit if there exists a T € (—o0, o0)
such that FT(q) = ¢q. An orbit £, is called a homoclinic orbit if there exists a point
q« € M such that F'(q) — gq., as | t |- oo, and g, is called the asymptotic point
of the homoclinic orbit. An orbit ¢, is called a heteroclinic orbit if there exist two
different points ¢+ € H such that F*(q) — q4, as t — +o00, and ¢4 are called the
asymptotic points of the heteroclinic orbit. An orbit ¢, is said to be homoclinic to
a submanifold W of H if infgew || F'(q) — Q ||— 0, as | t |— oc.

Example 1: Consider the same Cauchy problem for the system (1.2). The
fixed points of (1.2) satisfy the second order ordinary differential equation

(1.3) Gz +2[| ¢ ? —w?]g=0.

In particular, there exists a circle of fixed points ¢ = we?, where v € [0,27]. For
simple periodic solutions, we have

(1.4) =ae? ™, () = - [2(a® — w?)t - 7] ;

where a > 0, and vy € [0,27]. For orbits homoclinic to the circles (1.4), we have
1 .

(1.5) q = N cos 2p — sinp sech 7 cos 2mx — i sin 2p tanh 7 | ae’®®) |

A =1 +sinp sech 7 cos2nr,



1.3. INVARIANT SUBMANIFOLDS 3

e

where 7 = 4mva? — 72 t + p, p = arctan [Vae‘”g}, p € (—o00,00) is the Bicklund

parameter. Setting a = w in (1.5), we have heteroclinic orbits asymptotic to points
on the circle of fixed points. The expression (1.5) is generated from (1.4) through
a Bicklund-Darboux transformation [137].
Example 2: Consider the sine-Gordon equation,
Uty — Uge + Sinu =0,
under the decay boundary condition that u belongs to the Schwartz class in z. The
well-known “breather” solution,

tan v cos[(cos v)t]

1.6 u(t,r) = 4arctan ;
(1.6) (&) cosh|[(sin v)z]

where v is a parameter, is a periodic orbit. The expression (1.6) is generated from
trivial solutions through a Bécklund-Darboux transformation [59].

1.3. Invariant Submanifolds

Invariant submanifolds are the main objects in studying phase spaces. In phase
spaces for partial differential equations, invariant submanifolds are often subman-
ifolds with boundaries. Therefore, the following concepts on invariance are impor-
tant.

DEFINITION 1.2 (Overflowing and Inflowing Invariance). A submanifold W
with boundary oW is
e overflowing invariant if for any ¢t > 0, W C F! oW, where W = W UOW,
e inflowing invariant if any ¢ > 0, Fto W C W,
e invariant if for any ¢t > 0, Ft o W = W.
DEFINITION 1.3 (Local Invariance). A submanifold W with boundary W is
locally invariant if for any point ¢ € W, if |J F!(q) ¢ W, then there exists T €

te[0,00)
(0,00) such that |J F'(q) C W, and FT(q) € OW; andif |J Fl(q) ¢ W,
tef0,T) te(—o00,0]
then there exists T € (—oc,0) such that |J F!(q) C W, and FT(q) € OW.
te(T,0]

Intuitively speaking, a submanifold with boundary is locally invariant if any
orbit starting from a point inside the submanifold can only leave the submanifold
through its boundary in both forward and backward time.

Example: Consider the linear equation,

(1.7) ige = (14 14)qza + 19,
where i =+/—1,t € R', z € R', and ¢ is a complex-valued function of (¢, ), under
periodic boundary condition,
gz +1) =¢q(z).

Let ¢ = f%1+k52: then

Q=01 —kf)—kik'j,
where k; = 2jm. (j € Z). Qo = 1, and when | j |> 0, R.{Q,} < 0. We take the H'
space of periodic functions of period 1 to be the phase space. Then the submanifold

VV()Z {qGHl

q = co, Cois complex and || ¢ ||< 1}



4 1. GENERAL SETUP AND CONCEPTS

is an outflowing invariant submanifold, the submanifold

q - cleikl.‘l‘

W, = {q €H'

, ¢1is complex, and || q ||< 1}

is an inflowing invariant submanifold, and the submanifold

W = {q e H! | g=1co + e,

¢o and ¢; are complex, and || ¢ ||< 1}
is a locally invariant submanifold. The unstable subspace is given by

W = {qEH1

q=cp, Cois complex} 3

and the stable subspace is given by

Wt ={qge H! l g= Z ¢4 . ¢;’s are complex
jez/{o0}
Actually, a good way to view the partial differential equation (1.7) as defining an
infinite dimensional dynamical system is through Fourier transform, let
a(t,z) = Y c;(t)e’s*;
Jj€Z
then ¢;(t) satisfy
(J:[(l—k;'))-'-l,k]z}(J jEZ;
which is a system of infinitely many ordinary differential equations.

1.4. Poincaré Sections and Poincaré Maps

In the infinite dimensional phase space H, Poincaré sections can be defined in
a similar fashion as in a finite dimensional phase space. Let [, be a periodic or
homoclinic orbit in H under a flow F, and ¢, be a point on l,, then the Poincaré
section ¥ can be defined to be any codimension 1 subspace which has a transversal
intersection with [, at ¢.. Then the flow F* will induce a Poincaré map P in the
neighborhood of ¢, in £y. Phase blocks, e.g. Smale horseshoes, can be defined
using the norm.



CHAPTER 2

Soliton Equations as Integrable Hamiltonian PDEs

2.1. A Brief Summary

Soliton equations are integrable Hamiltonian partial differential equations. For
example, the Korteweg-de Vries (KdV) equation

U = —6uuy — Upzy ,

where u is a real-valued function of two variables ¢ and z, can be rewritten in the
Hamiltonian form
6H
Uy = 01‘— )

bu

H:/[%ui—us]dac,

under either periodic or decay boundary conditions. It is integrable in the classi-
cal Liouville sense, i.e., there exist enough functionally independent constants of
motion. These constants of motion can be generated through isospectral theory
or Bécklund transformations [8]. The level sets of these constants of motion are
elliptic tori [178] [154] [153] [68].

There exist soliton equations which possess level sets which are normally hy-
perbolic, for example, the focusing cubic nonlinear Schrodinger equation [137],

where

i = qzz + 2|q%q ,

where i = /-1 and ¢ is a complex-valued function of two variables ¢ and x; the
sine-Gordon equation [157],

Ut = Uz, + SiDU ,

where u is a real-valued function of two variables t and z, etc.

Hyperbolic foliations are very important since they are the sources of chaos
when the integrable systems are under perturbations. We will investigate the hy-
perbolic foliations of three typical types of soliton equations: (i). (141)-dimensional
soliton equations represented by the focusing cubic nonlinear Schrédinger equation,
(ii). soliton lattices represented by the focusing cubic nonlinear Schrédinger lattice,
(iii). (1+2)-dimensional soliton equations represented by the Davey-Stewartson 11
equation.

REMARK 2.1. For those soliton equations which have only elliptic level sets,
the corresponding representatives can be chosen to be the KdV equation for (14+1)-
dimensional soliton equations, the Toda lattice for soliton lattices, and the KP
equation for (142)-dimensional soliton equations.

Soliton equations are canonical equations which model a variety of physical
phenomena, for example, nonlinear wave motions, nonlinear optics, plasmas, vortex

b}



6 2. SOLITON EQUATIONS AS INTEGRABLE HAMILTONIAN PDES

dynamics, etc. [5] [1]. Other typical examples of such integrable Hamiltonian
partial differential equations are, e.g., the defocusing cubic nonlinear Schrédinger
equation,

iqt = 4z — 2|q|lq 5
where i = /=1 and ¢ is a complex-valued function of two variables ¢ and z; the
modified KdV equation,

up = £6uuy — Upys

where u is a real-valued function of two variables ¢ and z; the sinh-Gordon equation,

Ut = Ugzy + Sinhu

where u is a real-valued function of two variables t and z; the three-wave interaction
equations,

0ui (‘)ul — bl
ot +a,—EK— = bjujuy ,
where ¢,j,k = 1,2,3 are cyclically permuted, a; and b; are real constants, u; are
complex-valued functions of ¢ and x; the Boussinesq equation,

gt — gz + (U%)ze + Ugees =0,
where u is a real-valued function of two variables t and z; the Toda lattice,
%1, JOF = exp {— (s — Un—1)} —exp{—(un+1 —un)} ,
where u,,’s are real variables; the focusing cubic nonlinear Schrédinger lattice,

.0q ‘
16—: = (Qn+l = 2(171 #F Qn—l) + |Qn|2(qn+1 + Qn~l) s

where g,,’s are complex variables; the Kadomtsev-Petviashvili (KP) equation,
(1 + Ottty + Ui )y = £ 30y ,

where u is a real-valued function of three variables ¢, x and y; the Davey-Stewartson
IT equation,

i01q = [02 — 82)q + [2]q]* + uylq ,

(07 + B2]u = —40,|q|* |
where i = \/—1, ¢ is a complex-valued function of three variables t, z and y; and
u is a real-valued function of three variables ¢, r and y. For more complete list of
soliton equations, see e.g. [5] [1].
The cubic nonlinear Schrédinger equation is one of our main focuses in this
book, which can be written in the Hamiltonian form,

io — 6H
qt = 6(1 ’
where i
1= [l £ lat'ae

under periodic boundary conditions. Its phase space is defined as

o ()

qe€ H[%,l] : the Sobolev space H* over the period interval [0, l]} .

r=—q, q(.I' + 1) = (I(T)
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REMARK 2.2. It is interesting to notice that the cubic nonlinear Schrédinger
equation can also be written in Hamiltonian form in spatial variable, i.e.,
: 2
ez = iqr + 2|q|°q ,
can be written in Hamiltonian form. Let p = ¢,; then

oH
oq

>
Py
By

el
TR R

>

Sl

i~
o>
E||I

>
T

>
=

where

0 1 0
0 0 0 1

0 0 0 ’
0O -1 0 0

J =

‘ ; )
H= /[W F lal* = 5(@d — Gg)ldt ,

under decay or periodic boundary conditions. We do not know whether or not other
soliton equations have this property.

2.2. A Physical Application of the Nonlinear Schréodinger Equation

The cubic nonlinear Schriodinger (NLS) equation has many different applica-
tions, i.e. it describes many different physical phenomena, and that is why it is
called a canonical equation. Here, as an example, we show how the NLS equation
describes the motion of a vortex filament — the beautiful Hasimoto derivation [82].
Vortex filaments in an inviscid fluid are known to preserve their identities. The
motion of a very thin isolated vortex filament X=X (s,t) of radius € in an incom-
pressible inviscid unbounded fluid by its own induction is described asymptotically
by

(2.1) 0X /0t = Gkb |

where s is the length measured along the filament, ¢ is the time, x is the curvature,
b is the unit vector in the direction of the binormal and G is the coefficient of local
induction,

G= %[ln(l/e) +0(1)],

which is proportional to the circulation I' of the filament and may be regarded as
a constant if we neglect the second order term. Then a suitable choice of the units
of time and length reduces (2.1) to the nondimensional form,

(2.2) 0X /0t = kb .

Equation (2.2) should be supplemented by the equations of differential geometry
(the Frenet-Seret formulae)

(23)  0X/)os=1, 0t)ds=rkit, Of)ds=1b—nKt, Ob)Os=—T7
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where 7 is the torsion and ¢, @ and b are the tangent, the principal normal and the
binormal unit vectors. The last two equations imply that

(2.4) A7 +ib)/ds = —iT (7T + ib) — ki,

which suggests the introduction of new variables

S
(2.5) N = (@ + ib) exp{i/ Tds} ,
0

and

(2.6) q = Kexp {L/ Td.s-} :
0

Then from (2.3) and (2.4), we have

—

- = = 1 — =
(2.7) ON/0s = —qt, 0t/ds =Re{qN} = 5((1N +¢N) .
We are going to use the relation g:al = % to derive an equation for g. For this
we need to know 97/t and ON /Ot besides equations (2.7). From (2.2) and (2.3),

we have

= J(kb)/ds = (0k/Ds)b — kTl
=k Re{(%(’)n/as +i7) (b + i)}

l.e.

1

(2.8) oT/ot = Re{i(dq/ds)N} = éi[(aq/as)ﬁ— (9q/ds)~N] .

We can write the equation for N /8t in the following form:
(2.9) AN/t = aN + BN + 7,
where o, # and v are complex coefficients to be determined.
EEE = %[6N/6t N +oN/at- N
= %a(ﬁ N)Jot=0,
Le. @ = iR where R is an unknown real function.
B = %81\7/8t-ﬁ = ia(z\”f -N)/ot =0,
v =—N-8f/dt = —idq/0s .
Thus

(2.10) ON /0t = i[RN — (8q/0s)T] .



