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PHASE-TURBULENCE IN CONVECTION NEAR THRESHOLD
F.H. Busse

ABSTRACT. Phase-turbulence is the phenomenon of fluid
motion characterized by a chaotic variation in space and
in time, but associated with only a narrow band of modes
in the wavenumber space. Convection in a layer heated
from below exhibits phase turbulence in the limit of
small amplitudes when the layer is rotating about a ver-
tical axis or when the stress-free boundaries are used.
These cases offer the simplest examples of fluid motion
exhibiting turbulence in their spatial and time depend-
ence.

1. INTRODUCTION. Rayleigh-Bé&nard convection in a fluid layer
heated from below has become recognized in the past decade as

one of the most suitable systems for the study of the evolution
of turbulence. Much attention has been focussed on the low aspect
ratio case in which the width of the convection box permits the
realisation of only two or three convection rolls. For a survey
of the phenomena observed in this case we refer to Gollub and
Benson [1]. Phenomena similar to those occurring in a low aspect
ratio convection box are found when a horizontal magnetic field
is used to constrain the orientation of convection rolls [2]. The
fact that only a few spatial convection modes can be excited in
these experiments is responsible for the resemblance to solutions
of systems of a few ordinary differential equations such as the
Lorenz equations [3]. Various routes to chaotic behavior, such as
the Ruelle-Takens [4] scenario and the period doubling sequence
of Feigenbaum [5] have been observed both in the solutions of the
differential equations and in convection experiments, although
quantitative agreement cannot be expected. The detailed theoreti-
cal study of the transition to chaotic behavior in a low aspect
ratio convection box is complicated by the fact that the transi-

© 1986 American Mathematical Society
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2 F.H. BUSSE

tions of interest occur at Rayleigh numbers which are much higher
than the threshold value at which convection sets in.

A different kind of turbulence occurs in horizontally ex-
tended convection layers. Ahlers and Behringer [6] found that the
Rayleigh number for the onset of aperiodic time dependence de-
creases significantly with increasing aspect ratio of the convec-
tion box. The observations of Gollub and Steinman [7] have sug-
gested that this aperiodic time dependence is connected with the
onset of the skewed varicose instability. Numerical simulations
by Zippelius and Siggia [8] of finite amplitude convection in
the presence of stress-free boundaries indicate, that the attrac-
ting basin of stable steady convection rolls is so small and re-
stricted that the convection flow seems to be unable to approach
it after the destruction of the original unstable roll pattern by
the skewed varicose instability.

A convection layer with stress-free boundaries offers spe-
cial opportunities for the investigation of the skewed varicose
instability. Because the latter occurs in the immediate neighbor-
hood of the critical Rayleigh number, analytical expressions for
the stability boundary can be derived [8,9,10]. In the latter
paper it has been shown that convection rolls with the critical
wavenumber &, become unstable as soon as the Rayleigh number
exceeds its critical value. Moreover a new instability, the os-
cillatory skewed varicose instability, has been found which be-
comes important at low Prandtl numbers P. It is responsible for
the property that all convection rolls are unstable in the neigh-
borhood of the critical Rayleigh number for P < 0.543. The ab-
sence of any stable steady solution raises the question as to the

nature of the time dependence of the realized convection flow.

2. OUTLINE OF THE MATHEMATICAL ANALYSIS. Using the general rep-
resentation for the velocity field Y

(1) Y = VX (VX)) +7xQ0

where A is the vertical unit vector, we may write the general
solution for small amplitude convection in the form [11]

N
(2) o = £(z) Z Cn(t)exp{ikn-g} # wiaw
n=-N

where z is the coordinate in the vertical direction and where the

definitions
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= _ . 2 2 B
(3) k—n - _&n’ kn'& =0, I |Cn! = e(t)”, C_n = Cn
n=-N

have been used. C; denotes the complex conjugate of Cn. The sum-
mation limit N in (2) could approach infinity. Terms of the order
52 have not been given explicitly in (2); but they will be taken
into account in the analysis. The function f(z) is given by
sinn(z+%) in the case of stress-free boundaries at z = t%.

The time dependence of the coefficients Cn(t) is determined

by evolution equations of the form

d _ . = =]
(4.a) (1+P)a-ECp = (R Rp)YpCp n,i,r6(§n+&m+&r kp)[dnmrpcncm
+ s G__]c
nmrp nm- - r
_ a _ 2 2
(4.p) 35%m = ~ %0 *n! “Cnmt Kntm! T 90mCnCm

where R is the Rayleigh number, P is the Prandtl number and where

the definitions

72 vy = Pl 1Pk

p P

s gl 2,3
R, = (m +|§p| ) |%p

have been used. The d§-function is unity when its argument van-

ishes; otherwise it is zero. The more lengthy expressions for

dnmrp' nmrp’ 9nm
of Busse ant Bolton [10]. The coefficients Grp(t) originate from

s can be derived easily in analogy to the analysis

the representation of the flow associated with vertical vorticity,

(5) v = I Gnm(t)exp{i(&n+§m)°£}
n,m

Only the component of Y which is independent of z must be included
in equations (4). Since |§n+km| may be a small gquantity in con-
trast to I&pl which is of the order unity, the time dependence of
the coefficients Gnm may be of the same order or larger than the
viscous friction term which is the first term on the right hand
side of (4.b). Equations (4) include all terms that appear in the
stability analysis [10] if all vectors kp are admitted for which
Rp is close to critical value Rc = 27 n4/4 of the Rayleigh number.
To facilitate the computational solution of equations (4) it is
advantageous to introduce periodic boundary conditions in the

horizontal dimensions and consider the solution for the interval
(6) -a < x,y¥ < a .

Among the vectors
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(7) ¥ = ALEL) , —wcp,mem

those vectors will be admitted for which Rp is sufficiently close

to Rc’ say Rp < R, . The cutoff Rayleigh number R, may be chosen

equal to R. But iﬁ the actual computations RZ<R ﬁas usually been
-assumed in order to achieve a faster integration in time.

The results of numerical integrations of the system of equa-
tions (4) are in general accordance with the expectations based
on the stability analysis of rolls [10]. As initial condition.
the solution for a steady roll with a wavenumer Ikpl close to the
critical value o, was used. In addition small initial values were
assumed for the other coefficients Cn’ n ¥ *p. Unless the aspect
ratio 2a of the layer or R-Rc are very small, it is found that the
initial roll becomes unstable with respect to disturbances asso-
ciated with the neighboring k-vectors. This instability resembles
closely the monotonic skewed varicose instability. When the Prandtl
number P is of order unity the final state is usually a steady roll
solution with a wavenumber |k | less than |kpl. Sometimes, when a
total of 40 or more k—vectors participate (including their negative
counterparts) the final state is a limit cycle in which the energy
shifts in a periodic fashion from a roll like solution to a rec-
tangle type solution characterized by four k-vectors. When the
Prandtl number is lowered this behavior is encountered frequently
also for lower values of the aspect ratio 2a and lower numbers of
equations. Even cases of two independent frequencies corresponding
to a motion on a torus in the phase space have been found.

The most interesting behavior is the persistent aperiodic
time dependence that occurs when the Prandtl number is equal or
less than about 0.5 and when the number of k-vectors is about 40
or more. According to the analytical theory [10] all steady solu-
tions are unstable in this case and simple attractors do no longer
seem to exist. A typical example is shown in figure 1 and 2. The
heat transport H and the kinetic energy T of the toroidal part of

the motion are shown as a function of time,

]

1 2.2 2,2 2
(8«2} H §E|Cn| (n+ [kp [) % |

= 2 2
(8.b) T = Enzmlcnm] |1§n+1§m|

’
While the kinetic energy of the poloidal part of the motion de-
scribed by ¢ follows closely the function H(t), the toroidal part
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0. H——— e
0 2 4 6 8 10

Figure 1: 10_4-H(t) (dashed) and T (t)/200 (solid) as function of
= 800, a = 4,

time t (abscissa) in the case R = 107, Rl
P = 0.3. Initial condition is the steady solution for

rolls for C, = C, where & = (0.75 m,0). The other
2 =2 2
2,11072,

coefficients are set initially C = 10~

D } | | } 1 ! } o)

0 2 e 6 8 10

Figure 2: Same as Figure 1, but at a later time. The abscissa now

gives t - 40.
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T is often, but not always, anticorrelated with H. When instabili-
ties of the monotonic or oscillatory skewed varicose type grow,
energy is shifted into large scale horizontal motionsdescribed by
Y and a reduction of the heat transport occurs. In particular
figure 1 shows the onset of the monotonic skewed varicose insta-
bility after the convection has started as a steady roll solution
at t = 0. As low wavenumber rolls become dominant an oscillatory
skewed varicose instability occurs at the time t =~ 6. Later the
system settles down, but aperiodic variations in time continue to
occur as shown in figure 2. This apparently chaotic state is char-
acterized by an average heat transport which is about 3/4 of the
heat transport of steady periodic rolls with the critical wave-
number. The properties of the chaotic state require further study.
A broad band of modes participate in the motion, although a roll

like feature usually appears to dominate.

3. DISCUSSION . Convection in a non-rotating layer with stress-
free boundaries in the second example of a fluid system in which
persistent turbulence is encountered in the limit of vanishing
amplitude of motion. The first example occurs in a rotating layer
and can been described theoretically by the concept of the statis-
tical limit cycle [12,13]. Both cases are characterized by the
property that only a small band of the horizontal wave number par-
ticipates while the direction of the wavevectors is nearly iso-
tropically distributed and the phase of the motion is variable.
Weak or phase turbulence thus seems to be an appropriate name for
the phenomena encountered in these cases.

The more general relevance of phase turbulence derives from
the fact that the near-degeneracy of the participating modes of
convection which is its basic cause is typical for fully devel-
oped turbulent states. It is thus possible to study aspects of
the general problem of turbulence in simple, but experimentally
realisable cases which are at the same time accessible to detailed
theoretical analysis. While convection with stress-free boundaries
can not be realized as readily [14] as convection with rigid
boundaries,the latter case appears to exhibit qualitatively simi-
lar phenomena albeit at higher amplitude of motion.

A variety of methods have been introduced in the theoretical
analysis of the evolution of convection patterns. Since the
primary goal of the earlier work has been the elucidation of the

role of sidewalls in the formation of patterns, model equations
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rather than the basic equations have been used [15,16]. Even the

numerical simulations by Manneville [17] which are similar to

those of the present paper have not included all relevant non-

linear terms. For a general introduction to the subject we refer

to the recent book by Haken [18], who also considers the evolution

of hexagonal cells in the presence of asymmetries in the layer.

The periodic boundary conditions used in the present work are less

realistic but permit a considerable reduction of computer costs.

For the study of persistent turbulent states they appear to be

especially appropriate.
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NORMAL FORMS OF BIFURCATING PERIODIC ORBITS

Shui-Nee Chow* and Duo Wang*¥

ABSTRACT. We outline the normal form theory for periodic orbits and
give the normal forms of codimension 2 bifurcation periodic orbits.

SECTION 1. Introduction. In this lecture, we will present a summary of the
results in Chow and Wang [5].

Consider a differential equation with parameter A e Rk
(1) x = £(x,0) , x ¢ RS,

where f is smooth. Suppose that x = 0 is a critical point for all values of

the parameter. Let
Dxf(O,A) = A(A) .

If A(A) is hyperbolic, i.e., A(A) has no purely imaginary eigenvalues, then
in a neighborhood of x = 0 the flow of (1) is topologically equivalent to the

following linear flow

vy = ANy .
Next, we assume that A(A,) is non-hyperbolic, where A, is fixed. For
simplicity, we assume that A(A) is a versal deformation of A(7,) (see
Arnold [1] for more details on versal deformations). We say that the critical
point x = 0 is a codimension k bifurcation point if A € RK in the versal
deformation A(A). For codimensions 1 and 2, it is not difficult to obtain the
normal forms of (1) in a neighborhood of x = 0. In many cases, one could
also give complete bifurcation diagrams for the flows of the normal forms near

x = 0. We refer the reader to the following books: Arnold [1], Chow and Hale

1980 Mathematics Subject Classification. 34C20, 34C25.
*Partia.lly supported by NSF grant DMS8401719 and DARPA

*¥permanent address: Department of Mathematics, Jilin University,
Changchun, People’s Republic of China
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10 CHOW AND WANG

[4] and Guckenheimer and Holmes [7] for more details. We also note that in
the analysis of these vector fields, one encounters certain Abelian integrals
which are related to Picard-Fuchs equations (see Carr, Chow and Hale [3], van
Gils [9], for example).

Suppose we have a periodic orbit r at A,. Let B(A,) be its monodromy
matrix. Suppose that B(A,) is hyperbolic, i.e., B(A,) has no eigenvalues on
the unit circle, then the flow near the periodic orbit is topologically
equivalent to the linear flow for some appropriate (n-1) x (n-1) matrix
C(%o)

z=cpz, zeR,

.

e =1,

where e is an angle variable. Similarly, we may define the codimension of a
non-hyperbolic periodic orbit. It is well-known that there are only three
types of codimension 1 bifurcation for a periodic orbit. They are (a)
saddle-node bifurcation; (b) period-doubling bifurcation and (c) Hopf
bifurcation (invariant circles). Details may be found in Brunovsky [2], Chow
and Hale [4] and Guckenheimer and Holmes [7].

For the case of a codimension 2 bifurcating periodic orbit, the bifurcation
diagrams are not completely understood. In (8], Medved classify all
codimension 2 monodromy matrices. By using his results, we are able to give
all the normal forms of codimension 2 bifurcation periodic orbits. In many
cases, we are also able to give the bifurcation diagrams of the flows near the
periodic orbit. In section 2, we will outline the normal form theory for our
purposes. In section 3, we apply the theory to codimensional 2 bifurcation
periodic orbits.

We finally note that the theory of normal forms for periodic orbits of
autonomous differential equations could be deduced from the theory of normal

forms for diffeomorphisms. The converse is also true.

SECTION 2. Normal forms. Suppose X,(t) is a T-periodic solution, T > O,
of (1) at A = 0. Let x = Xo(t) + y. Then in a small neighborhood of

0 € R x Rk, equation (1) becomes

m - m-1 «
(2) y=A®Y+ I AT£ () + 5 ATF (t)y
lol=1 lal=1
m mj .
£ 55 2490y + o+ 1yD™
J=2 |=|=0

where « = (a;,...,ap) 1is a multi-index with nonnegative integers



ai’s, la| = ay + oc0 +
{(f(t) e€@ | £(t + T) =
(H(t) € €O*D | H(t + T)

NORMAL FORMS

an, A% = A %1 cee Ap%n; fo(t) € C; =
f(t), t € R}, A(t), Fa(t) e €™ =
SHt), t e Ry, #9(t,y) em =
. ’ ] @ ly € # vl

{#(t,y) € €1 | each component ¢j(t,y) is homogeneous polynomial

in y € R? with T-periodic coefficients in t, 1 € i € n}.

By Floquet Theory,

T-periodic map

(3) y @ P()y,
transforms (2) into

there exists P(t) e€ Cr™*1  guch that the linear

x m_l x
@ y=ay+ I ATf )+ I ATE(t)y
lol=1 lal=1
m mj 5
+ 31 2490y +onn + 1yD™)
=2 |a|=0

where A e C*N, Note
(4).

that foFx and #(J)(t,y) are different in (3) and

Consider the following transformations:

(T);  y=u+ I
1#1=1

(T2) y=u+ I
18]=1

(T3). . y=u+ %
i 181=i

zF he(t), 14iém h(t) e !

2P

nxn,

Hp(t)u, l1éié&ml, Hp(t) € CT ;

2P K‘(g‘j)(t,u), 06i, 264§, i+janm,

K;‘j)(t,u) € H,‘l’,

and the corresponding linear operators:

< . D n
(1) 01 P ey 2 Cy

0l h(t) = h’(t
- . ~nxn n
(ii) 02 s CT > CT

02 H(t) = H’(t

(i11) 0y, : u;;. N H:}

03‘j K(t,u) = K

n.
T!

) - An(t), h(t) e €
xn
) - AH(t) + H(t)A, H(t) e eg"

*(t,u) + 32 K(t,u)Au - AK(t,u),

K(t,u) € u%

11
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Let R, = Range(0,), R, = Range(0;), R,j = Range(0,j), and
Gy, Gz, Gsj be their supplementary subspaces in CI,I'., c;"’ and H‘,l’.
respectively. Note that the G’s are nonunique.

THEOREM 1. By using transformations (T,)i, (T2)i, (Ta)ij, equation (4) is

transformed to the following:

= x m—l «x
(5) a=Aau+ I Aog(t)+ I A G (tu
lx|=1 |x|=1
m mj .
+ 31 e D+ oaar + ™
=2 |a|=0

where ga(t) € Gy, Galt) € Gay tald)(tu) € Gaj, 2 6 j & m.

COROLLARY 2. Let o¢(A) be the spectrum of A. If u # ¢ 2n/T i, i =
v-1, for all p e o(A) and ¢ e Z, then G, = {0}. If ¢ = 0 is allowed,
then G, consists only of constant vectors.

COROLLARY 3. If Bj-pk # ¢27/T i, ¢ 70, & eZ holds for every uj
pk € o(A), then G; consists only of constant matrices.

REMARK 4. Under the assumptions of Corollary 3, Arnold’s results on
versal deformation of matrices [2] can be applied. In particular, if A is in
(complex) Jordan form, then the structures of matrices in G, can be
determined easily.

DEFINITION 5. Suppose Hy,...,4p are the eigenvalues of A and « is
multi-index (]«| » 2). If

(6) @m -m =t &4, 1=V, tegz,

holds for some ¢ and puy, then the term u* ey is called a resonant term,

where ey = (0,...,0,1,0,...,0)%.
(k)

COROLLARY 6. If A = diag(p,se.ppn) and for any |a| = j 2 2 and
¢ ¢ Z, the resonant condition (6) does not hold, then G, j= {0}; If (6) holds
only for ¢ = 0, then G, j consists only of the resonant terms with constant
coefficients.

REMARK 17. Assume G,y consists only of constant vectors and G,
consists only of constant matrices. Let dim G, = d, and dim G; = d;. We
can rewrite (5) as

d1 m d2 m-1
Q) @=au+ I (I A%cvi+ I (I %D Wu
=1 J|a«|=1 i=l |a«|=1

m . mj 3
s T w + T %) + o +un™h,
Jj=2 Jx|=1
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where (Vj} is a basis of G,, (Wi} is basis of G,;, Cq and Dg are
constants for each i.
DEFINITION 8. Let

m « m-1
€, = Py X C s B, = I A D ..
i etk ai ;8 af <1 ai
Then the truncated equation of (7):
iy dy
(8) 1’1=Au+')',' € Vi+ b piwiu

i=1 i=1

m .
+ 1w .
i=2

is called a normal form of (1) up to order m associated with T-periodic

solution x,(t).

We note that normal forms are not unique.

SECTION 3. Applications. First we assume that in (4)
fa(t) s 0, l & |x| € m.

We consider the following 8 cases of codimension 2 bifurcation of the
periodic orbit x,(t) (see [8]). Let J be the monodromy matrix of linearized
equation of (2). Without loss of generality, we assume T = 1.

Case (1).

1 I 0 1
J = i.e. A= S
0o 11, 0 o0

The normal form up to order 2 is

Yy = Wg s
(9) )
ué = €y + €5uy #* auy + ﬁulu2 .
Case 2.
-1 1
J =
0 -11
We have
2 1 1] 0 -1
J° = and A=
0 1 0 o0

Since the 2-periodic matrix P(t) of the Floquet transformation has the

symmetric property:
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P(t + T) = -P(t) ,

the normal form up to order 3 is

uy Uy
(10)
] -
Up T €qup * egup *oouy + Auju,
Case (3).
[ cos sin w
J= ] ey
5 2n  q 2
l -sin @ cos @

s

where p, q are integers with (p,q) = 1. We have

F 0 e ]
A= —-w 0 ds
Let 2z = x, - ix, and then let 2z = ve“it, The complex form of the

normal form is

(11) v’ = ev + allvl’v + coe + aklvlzkv +gv TV

where q -3 <2k +1 € q - 1.

Let v = rel®. Then the real normal form is

5 3 . 2k+1 q-1 .
r’ = er + “1F + + qF # i (ﬂlcos qe + ﬂzs1n qe) ,
(12) o
e’ = € + alzrz + e+ aerZk + rd 2(ﬁzsin qe - ﬁzcos qe) .
Case (4).
[ cos w sin @ 0
. w , 1
J = -sin @ cos w 0 0 < o < 3
L 0 0 11,
and /27 1is not a root of unity. We have
[ O W 0
A= - 0 0
0 0 0 6

The normal form is

= €§r+ o ry + a2r3 s

(12)

2
y = ey ﬂlyz + Bor

where the angle equation is omitted. The original equation can be regarded

as a quasi-periodic (with 2 frequencies) perturbation of (12).



