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PREFACE TO SECOND EDITION

Since the printing of the first edition, I have received input from several teachers
and students giving me suggestions to strengthen various sections and include answers
to problems. Most of these suggestions have been incorporated in the second edition.

In'the last few years, personal computers have become so powerful that itis now
possible to use them to solve complex control system problems easily and efficiently.
This development should make the study of control systems easier, as the student can
go through large numbers of analysis and design runs in order to leam its theory. The
book offers computer-aided leaming eénvironment with any commercially available
CAD (Computer-Aided-Design) software.

M. GOPAL



PREFACE TO FIRST EDITION

Over the past two decades, Modern Control System Theory has been
gaining great importance, for being potentially applicable to an increasing
number of widely different disciplines of human activity. Basically, the
Modern Control System Theory has involved the study of analysis and control
of any dynamical system—whether engineering, economuc, managerial,
medical, social or even political. This theory first gained considerable
marurity in the discipline of engineering and has been successfully applied in
a variety of branches of engineering, particularly receiving great impetus from
aerospace engineering. Recently, it has been applied 1n economics and other
disciplines as well, and has proved. very promising. A fascinating fact is that
all these widely different disciplines of application depend upona common
core of mathematical techniques of the Modern Control System Theory. It
is these techniques that I have exposed in this book, emphasizing their
application in the engineering discipline.

Modera control theory has no doubt been presented in varying depths
by many prominent authors. Among many excellent presentations, a few
stand out in my mind because of the repeated use I have made of them over
the years: Linear System Theory—C. T. Chen; Linear Optimal Control Systems
—H. Kwakernaak and R. Sivan; An Introduction to Linear Control Systems
—T. B. Fortmann and K. L. Hitz; Optimal Control Theory: An Introduction—
D. E. Kirk; Optimum Systems Control—A. P. Sage and C. C. - White, III
However, despite having these and many other good books onmodern control
theory, while teaching undergraduate and postgraduate students of various
engineering branches and while guiding doctoral students, I have experienced
a strong need for a book that meets the following requirements:

1. A thorough exposure of modern control theory through the appli-
cation of its potential concepts consistently to a variety of practical
system examples drawn from various engineering disciplines.

2. A significant provision of the necessary topics that enables a research
student to comprehend various technical papers in which modern
control theory techniques are employed to solve many systems and
control problems.

3. A flexibility which enables a teacher to add recent potential topics of
Linear Multivariable System Theory.
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I have therefore made an attempt to meet these requirements which are
eagerly sought after, but have not been met in any of the existing works.
The present book is the result of such an attempt.

This book presents both continuous-time and discrete-time systems, and
brings out, in particular, the simularities which reinforce many ideas. Al.so,
an attempt has been .made to point out many exceptions that occur which
warrant a careful study in each case. Special attention has been given to
important control problems such as deadbeat control, non-zero set points,
and external disturbances and sensitivity problems in optimal linear regulators,
Further, at appropriate places, the recent proposals for system design have
been emphasized, such as modal control, state observers and estimators,
suboptimal control, etc.

Specifically, the book provides lucid illustrations of modern control
system theory concepts by applying them repeatedly to five practical control
problems from various engineering disciplines. It was not possible to avoid
simplification of the real-life problems for the sake of tractability; yet,
patticular care has been taken to retain the essence of the real-life problems
in their simplified versions. In fact, the same chosen five real-life problems
have been thoroughly developed over several chapters to reinforce the
concepts.

The book is organised as follows:

Chapter 2 presents the basic core background, namely: linear spaces and
linear operators. Chapters 3 and 4 deal with the issues of modelling of
systems. Chapters 5 through 8 primarily present methods of analysis; also,
they project some of the potential design techniques that evolve from analysis.
Finally, Chapters 9 through 12 completely address themselves to the design
of controllers for several classes of plants.

Most of the theoretical results have been presented in a manner suitable
for digital computer programming, along with the necessary algorithms for
numerical computations. However, detailed discussion of these algorithms
has been deliberately avoided; instead, suitable references for further study
have been suggested. Exercise problems, tailored particularly to help the
reader understand and apply the results presented in the text, have been
given at the end of each chapter. In fact, some of these problems also serve
the purpose of extending the subject matter of the text.

A basic working understanding in the following areas has been assumed
on the part of the reader: calculus, linear differential and difference equations,
transform theory, matrix theory and probability theory. It would be
additionally facilitating, though not necessary, for the reader to haye taken
a course on classical control theory.

For teaching the material covered in this book, I suggest—based on the
successful class-testing of the material in the courses EE 658 and EE 660 at
the Indian Institute of Technology, Bombay—that two courses may be
offered:

1. A one-semester course at senior undergraduate or postgraduate

level covering Chapters 1 through 8.
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2. A one-semester course at postgraduate level covering Chapters 9
through 12,

I have great pleasure in expressing the acknowledgements which I owe
to many persons in writing this book. I warmly recognize the continuing
debt to my ‘mentor’ in Control System Theory Prof. I. J. Nagrath of the
Birla Institute of Techrology and Science, Pilani. Itis in him that I have
found my teacher, friend, and source of inspiration. At the Indian Institute
of Technology, Bombay, I have been influenced apd assisted by a great many
people while preparing this book. I acknowledge pleasant association with
Dr. M. C. Srisailam, Dr. S. D. Agashe, Dr. H. Narayanan, Prof. V. V. Athani,
Dr. (Mrs.) Y.S. Apte and Dr. M.P.R. Vittal Rao. I must record, separately,
my appreciation of the help given by my doctoral studesrts, Mr. J. G.
Ghodekar, Mr. P. Pratapchandran Nair and Dr. S.I. Mehta during the
crucial period of the growth of this book. Finally, I wish to express my
gratitude to my wife Lakshmi, my son Ashwani and daughter Anshu for their
interest, encouragement, and understanding and for bearing with me through
the project.

I am grateful to the authorities of the Indian Institute of Technology,
Bo;nbay for aiding this book writing project through Curriculum Development
Cell.

I warmly welcome suggestions and criticism from the users of this book.
I shall consider it a pleasure to respond to specific questions concerning the
use of the material in this book.

M. GorAL
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1. INTRODUCTION

1.1 SYSTEMS: MODELLING, ANALYS(S AND CONTROL

The word ‘system’ implies essentially two concepts: (1) interaction
within a set of given or chosen entities, and (2) a bouundary (real or imaginary),
separating the entities inside the system from its outside entities, The inter-
action is among entities inside the system that influence or get influenced by
those outside the system. The boundary is. however, completely flexible.
For instance, one may choose to confine oneself to only a constituent part of
an original system as a system itself; or, on the contrary, one may choose to
strech the boundary of the original system to include new entities as well.

In this book, we confine ourselves to only physical systems. In the study
of physical systems, the entities of interest are certain physical quantities;
these quantities being interrelated in accordance with some principles based
on fundamental physical laws. Under the influence of external inputs (entities
outside the boundary), the interactions arise in the system in a manner entirely
attributable to the character of the inputs and the bonds of interaction. The
inputs, while affecting the system behaviour, are usually not reciprocally
affected and therefore are arbitrary in their time-behaviour.

In dealing with control systems, we will invariably be concerned with the
dynamic characteristics of the system. Our main interest will be focussed
upon only some of the entities of dynamic systems, namely those whose beha-
viour we wish to control. These entities—the outputs of the system, are normally
accessible for purposes of measurement.

The study of physical systems often broadly consists of the following
stages: (1) Modelling (2) Analysis (3) Design and synthesis.

Zadeh and Desoer (1963) have defined a ‘system’ as a collection of all
of its input-output pairs. For a quantitative analysis of a system, we determine
mathematical relations which can be used to generate all input-output pairs
belonging to the system. In our terminology, the mathematical relations used
for generating all possible input-output pairs of a system will be referred to
as the mathematical model of the system. The mathematical model that we
develop for a system should account for the fact that to each input to a
dynamical system, there are, in general, a number of possible outputs. As
we shall see in later chapters, the nonuniqueness of response to a given input
reflects the dependence of output not merely on the input but also on the
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initial status (initial conditions) of the dynamical system. A set of differential/
difference equations is a well-known form of mathematical description of a
dynamical system which accounts for initial conditions of the system and gives
rise to set of all possible input-output pairs.

Another useful form of mathematical description of a dynamical system
is state variable formulation. As we shall see in later chapters of this book,
the state of a system is a mathematical entity that mediates between the
inputs and outputs. For given inputs and initial status of the dynamic system,
the change in state variables with time is first determined and therefrom the
values of outputs are obtained. The reader will observe the fact that the set
of state variables, in general, is not a quantity that is directly measurable; it is
introduced merely as a mathematical convenience. The only variables that
have physical meaning are those that we can generate or observe, namely the
inputs and outputs.

It is important to note that for the purpose of mathematical modelling,
certain idealizing assumptions are always made, since a system, generally,
cannot be represented in its full intricacies. An idealized physical system is
often called physical model which is a conceptual physical system resembling
the actual system in certain salient features but which is simpler and therefore
more amenable to analytical studies. In many cases, the idealizing assump-
tions involve neglecting effects which are clearly negligible. Many of these
effects are in fact neglected as a matter of course without a clear statement of
implied assumptions. For example, the effect of mechanical vibrations on
the performance of an electronic circuit is ordinarily not considered. Similarly,
in electric power equipment the induced voltage due to surrounding time-
varying electromagpetic fields (radio waves etc.) is usually neglected.

The above mentioned examples concern factors which are completely
negligible in situations of interest. However, in many other situations there
are more important effects which will still be neglected frequently to define a
problem so that it can be handled mathematically without much complexity.
For example, one early approximation which is usually made is to consider a
system with distributed parameters as an equivalent system with lumped para-
meters. (If it is required to control the temperature of a room, it will first
be assumed that the room is isothermal; to do otherwise would lead to very
complicated partial differential equations representing the heat flow, both
conductive and convective, between any-two points in the room), Similarly,
in physical systems we are uncertain to varying degrees about the values of
parameters, measurements, expected inputs and disturbances (stochastic systems).
In many practical applications, the uncertainties can be neglected and we
proceed as though all quantities have definite values that are known precisely.
This assumption gives us a deterministic model of the system.

Generally, crude approximations are made in a first attack on the problem
50 as to get a quick feel of the predominant effects. These assumptions are
then gradually given up to obtain a more accurate physical model. A point
of diminishing return is reached when the gain in accuracy of representation



