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Preface

Most statistical work is concerned directly with the provision and implementa-
tion of methods for study design and for the analysis and interpretation of data.
The theory of statistics deals in principle with the general concepts underlying
all aspects of such work and from this perspective the formal theory of statistical
inference is but a part of that full theory. Indeed, from the viewpoint of indi-
vidual applications, it may seem rather a small part. Concern is likely to be more
concentrated on whether models have been reasonably formulated to address
the most fruitful questions, on whether the data are subject to unappreciated
errors or contamination and, especially, on the subject-matter interpretation of
the analysis and its relation with other knowledge of the field.

Yet the formal theory is important for a number of reasons. Without some
systematic structure statistical methods for the analysis of data become a col-
lection of tricks that are hard to assimilate and interrelate to one another, or
for that matter to teach. The development of new methods appropriate for new
problems would become entirely a matter of ad hoc ingenuity. Of course such
ingenuity is not to be undervalued and indeed one role of theory is to assimilate,
generalize and perhaps modify and improve the fruits of such ingenuity.

Much of the theory is concerned with indicating the uncertainty involved in
the conclusions of statistical analyses, and with assessing the relative merits of
different methods of analysis, and it is important even at a very applied level to
have some understanding of the strengths and limitations of such discussions.
This is connected with somewhat more philosophical issues connected with
the nature of probability. A final reason, and a very good one, for study of the
theory is that it is interesting.

The object of the present book is to set out as compactly as possible the
key ideas of the subject, in particular aiming to describe and compare the main
ideas and controversies over more foundational issues that have rumbled on at
varying levels of intensity for more than 200 years. I have tried to describe the



Preface 5

various approaches in a dispassionate way but have added an appendix with a
more personal assessment of the merits of different ideas.

Some previous knowledge of statistics is assumed and preferably some
understanding of the role of statistical methods in applications; the latter
understanding is important because many of the considerations involved are
essentially conceptual rather than mathematical and relevant experience is
necessary to appreciate what is involved.

The mathematical level has been kept as elementary as is feasible and is
mostly that, for example, of a university undergraduate education in mathem-
atics or, for example, physics or engineering or one of the more quantitative
biological sciences. Further, as I think is appropriate for an introductory discus-
sion of an essentially applied field, the mathematical style used here eschews
specification of regularity conditions and theorem—proof style developments.
Readers primarily interested in the qualitative concepts rather than their devel-
opment should not spend too long on the more mathematical parts of the
book.

The discussion is implicitly strongly motivated by the demands of applic-
ations, and indeed it can be claimed that virtually everything in the book has
fruitful application somewhere across the many fields of study to which stat-
istical ideas are applied. Nevertheless I have not included specific illustrations.
This is partly to keep the book reasonably short, but, more importantly, to focus
the discussion on general concepts without the distracting detail of specific
applications, details which, however, are likely to be crucial for any kind of
realism.

The subject has an enormous literature and to avoid overburdening the reader
I have given, by notes at the end of each chapter, only a limited number of key
references based on an admittedly selective judgement. Some of the references
are intended to give an introduction to recent work whereas others point towards
the history of a theme; sometimes early papers remain a useful introduction to
a topic, especially to those that have become suffocated with detail. A brief
historical perspective is given as an appendix.

The book is a much expanded version of lectures given to doctoral students of
the Institute of Mathematics, Chalmers/Gothenburg University, and I am very
grateful to Peter Jagers and Nanny Wermuth for their invitation and encourage-
ment. It is a pleasure to thank Ruth Keogh, Nancy Reid and Rolf Sundberg for
their very thoughtful detailed and constructive comments and advice on a pre-
liminary version. It is a pleasure to thank also Anthony Edwards and Deborah
Mayo for advice on more specific points. I am solely responsible for errors of
fact and judgement that remain.
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The book is in broadly three parts. The first three chapters are largely intro-
ductory, setting out the formulation of problems, outlining in a simple case
the nature of frequentist and Bayesian analyses, and describing some special
models of theoretical and practical importance. The discussion continues with
the key ideas of likelihood, sufficiency and exponential families.

Chapter 4 develops some slightly more complicated applications. The long
Chapter 5 is more conceptual, dealing, in particular, with the various meanings
of probability as it is used in discussions of statistical inference. Most of the key
concepts are in these chapters; the remaining chapters, especially Chapters 7
and 8, are more specialized.

Especially in the frequentist approach, many problems of realistic complexity
require approximate methods based on asymptotic theory for their resolution
and Chapter 6 sets out the main ideas. Chapters 7 and 8 discuss various com-
plications and developments that are needed from time to time in applications.
Chapter 9 deals with something almost completely different, the possibil-
ity of inference based not on a probability model for the data but rather on
randomization used in the design of the experiment or sampling procedure.

I have written and talked about these issues for more years than it is com-
fortable to recall and am grateful to all with whom I have discussed the topics,
especially, perhaps, to those with whom [ disagree. I am grateful particularly
to David Hinkley with whom I wrote an account of the subject 30 years ago.
The emphasis in the present book is less on detail and more on concepts but the
eclectic position of the earlier book has been kept.

I appreciate greatly the care devoted to this book by Diana Gillooly, Com-
missioning Editor, and Emma Pearce, Production Editor, Cambridge University
Press.



List of examples

Example 1.1
Example 1.2
Example 1.3
Example 1.4
Example 1.5
Example 1.6
Example 1.7
Example 1.8
Example 1.9
Example 1.10

Example 2.1
Example 2.2
Example 2.3
Example 2.4
Example 2.5
Example 2.6
Example 2.7
Example 2.8
Example 2.9

Example 3.1
Example 3.2
Example 3.3
Example 3.4
Example 3.5
Example 3.6
Example 3.7

The normal mean

Linear regression

Linear regression in semiparametric form
Linear model

Normal theory nonlinear regression
Exponential distribution

Comparison of binomial probabilities
Location and related problems

A component of variance model

Markov modeis

Exponential distribution (ctd)

Linear model (ctd)

Uniform distribution

Binary fission

Binomial distribution

Fisher’s hyperbola

Binary fission (ctd)

Binomial distribution (ctd)

Mean of a multivariate normal distribution

Test of a Poisson mean
Adequacy of Poisson model
More on the Poisson distribution
Test of symmetry
Nonparametric two-sample test
Ratio of normal means

Poisson-distributed signal with additive noise

AV SRV R R S e

—
[\

N NN NN ==
N W W= O O WYY

OB W W W W W
— O 0 X B W



Example 4.1
Example 4.2
Example 4.3
Example 4.4
Example 4.5
Example 4.6
Example 4.7
Example 4.8
Example 4.9
Example 4.10
Example 4.11
Example 4.12
Example 4.13
Example 4.14

Example 5.1
Example 5.2
Example 5.3
Example 5.4
Example 5.5
Example 5.6
Example 5.7
Example 5.8
Example 5.9
Example 5.10
Example 5.11
Example 5.12
Example 5.13

Example 6.1
Example 6.2
Example 6.3
Example 6.4
Example 6.5
Example 6.6
Example 6.7
Example 6.8
Example 6.9
Example 6.10

Example 7.1
Example 7.2

List of examples

Uniform distribution of known range
Two measuring instruments

Linear model

Two-by-two contingency table
Mantel-Haenszel procedure

Simple regression for binary data
Normal mean, variance unknown
Comparison of gamma distributions
Unacceptable conditioning

Location model

Normal mean, variance unknown (ctd)
Normal variance

Normal mean, variance unknown (ctd )
Components of variance

Exchange paradox

Two measuring instruments (ctd)
Rainy days in Gothenburg

The normal mean (ctd)

The noncentral chi-squared distribution
A set of binomial probabilities
Exponential regression

Components of variance (ctd)

Bias assessment

Selective reporting

Precision-based choice of sample size
Sampling the Poisson process
Multivariate normal distributions

Location model (ctd)
Exponential family
Transformation to near location form

Mixed parameterization of the exponential family

Proportional hazards Weibull model

A right-censored normal distribution
Random walk with an absorbing barrier
Curved exponential family model
Covariance selection model

Poisson-distributed signal with estimated background

An unbounded likelihood
Uniform distribution

47
48
49
51
54
55
56
56
56
57
59
59
60
61

67
68
70
71
74
74
75
80
82
86
89
90
92

98

98

99
112
113
118
119
121
123
124

134
135



Example 7.3
Example 7.4
Example 7.5
Example 7.6
Example 7.7
Example 7.8
Example 7.9
Example 7.10
Example 7.11
Example 7.12
Example 7.13
Example 7.14
Example 7.15
Example 7.16

Example 8.1
Example 8.2
Example 8.3
Example 8.4
Example 8.5
Example 8.6
Example 8.7

Example 9.1

List of examples

Densities with power-law contact

Model of hidden periodicity

A special nonlinear regression

Informative nonresponse

Integer normal mean

Mixture of two normal distributions
Normal-theory linear model with many parameters
A non-normal illustration

Parametric model for right-censored failure data

A fairly general stochastic process
Semiparametric model for censored failure data
Lag one correlation of a stationary Gaussian time series
A long binary sequence

Case-control study

A new observation from a normal distribution
Exponential family

Correlation between different estimates

The sign test

Unbiased estimate of standard deviation
Summarization of binary risk comparisons
Brownian motion

Two-by-two contingency table

136
138
139
140
143
144
145
146
149
151
151
153
153
154

162
165
165
166
167
171
174

190



Contents

Preliminaries

Summary

1.1 Starting point

1.2 Role of formal theory of inference

1.3 Some simple models

1.4 Formulation of objectives

1.5 Two broad approaches to statistical inference
1.6  Some further discussion

1.7 Parameters

Notes 1

Some concepts and simple applications

Summary

2.1 Likelihood

2.2 Sufficiency

2.3 Exponential family

2.4 Choice of priors for exponential family problems
2.5 Simple frequentist discussion
2.6 Pivots

Notes 2

Significance tests

Summary

3.1 General remarks

3.2
33

Simple significance test
One- and two-sided tests

N W W e e e

10
13
14

17
17
17
18
20
23
24
25
27

30
30
30
31
35



Contents

3.4 Relation with acceptance and rejection

3.5 Formulation of alternatives and test statistics
3.6 Relation with interval estimation

3.7 Interpretation of significance tests

3.8 Bayesian testing

Notes 3

More complicated situations

Summary

4.1 General remarks

4.2
4.3
44
4.5

General Bayesian formulation

Frequentist analysis

Some more general frequentist developments
Some further Bayesian examples

Notes 4

Interpretations of uncertainty
Summary

5.1
5.2
53
54
55
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

General remarks

Broad roles of probability

Frequentist interpretation of upper limits
Neyman-Pearson operational criteria

Some general aspects of the frequentist approach
Yet more on the frequentist approach
Personalistic probability

Impersonal degree of belief

Reference priors

Temporal coherency

Degree of belief and frequency

Statistical implementation of Bayesian analysis
Model uncertainty

Consistency of data and prior

Relevance of frequentist assessment

Sequential stopping

A simple classification problem

Notes 5

Asymptotic theory
Summary

6.1
6.2

General remarks
Scalar parameter

11

36
36
40
41
42
43

45
45
45
45
47
50
59
62

64
64
64
65
66
68
68
69
71
73
76
78
79
79
84
85
85
88
o1
93

96
96
96
97



12

Contents

6.3 Multidimensional parameter

6.4 Nuisance parameters

6.5 Tests and model reduction

6.6 Comparative discussion

6.7 Profile likelihood as an information summarizer
6.8 Constrained estimation

6.9 Semi-asymptotic arguments

6.10 Numerical-analytic aspects

6.11 Higher-order asymptotics

Notes 6

Further aspects of maximum likelihood
Summary

7.1 Multimodal likelihoods

7.2 Irregular form

7.3  Singular information matrix

7.4 Failure of model

7.5 Unusual parameter space

7.6 Modified likelihoods

Notes 7

Additional objectives

Summary

8.1 Prediction

8.2 Decision analysis

8.3 Point estimation

8.4 Non-likelihood-based methods
Notes 8

Randomization-based analysis
Summary

9.1 General remarks

9.2 Sampling a finite population
9.3 Design of experiments
Notes 9

Appendix A: A brief history
Appendix B: A personal view
References

Author index

Subject index

107
109
114
117
119
120
124
125
128
130

133
133
133
135
139
141
142
144
159

161
161
161
162
163
169
175

178
178
178
179
184
192
194
197
201
209

213



1

Preliminaries

Summary. Key ideas about probability models and the objectives of statist-
ical analysis are introduced. The differences between frequentist and Bayesian
analyses are illustrated in a very special case. Some slightly more complicated
models are introduced as reference points for the following discussion.

1.1 Starting point

We typically start with a subject-matter question. Data are or become available
to address this question. After preliminary screening, checks of data quality and
simple tabulations and graphs, more formal analysis starts with a provisional
model. The data are typically split in two parts (y : z), where y is regarded as the
observed value of a vector random variable Y and z is treated as fixed. Sometimes
the components of y are direct measurements of relevant properties on study
individuals and sometimes they are themselves the outcome of some preliminary
analysis, such as means, measures of variability, regression coefficients and so
on. The set of variables z typically specifies aspects of the system under study
that are best treated as purely explanatory and whose observed values are not
usefully represented by random variables. That is, we are interested solely in the
distribution of outcome or response variables conditionally on the variables z; a
particular example is where z represents treatments in a randomized experiment.

We use throughout the notation that observable random variables are rep-
resented by capital letters and observations by the corresponding lower case
letters.

A model, or strictly a family of models, specifies the density of ¥ to be

fr(y:z;6), 1.1



2 Preliminaries

where 6 C €2 is unknown. The distribution may depend also on design fea-
tures of the study that generated the data. We typically simplify the notation to
fr(¥;6), although the explanatory variables z are frequently essential in specific
applications.

To choose the model appropriately is crucial to fruitful application.

We follow the very convenient, although deplorable, practice of using the term
density both for continuous random variables and for the probability function
of discrete random variables. The deplorability comes from the functions being
dimensionally different, probabilities per unit of measurement in continuous
problems and pure numbers in discrete problems. In line with this convention
in what follows integrals are to be interpreted as sums where necessary. Thus
we write

E(Y) = E(¥;0) = / Yy (v:60)dy (12)

for the expectation of Y, showing the dependence on § only when relevant. The
integralis interpreted as a sum over the points of support in a purely discrete case.
Next, for each aspect of the research question we partition 8 as (i, 1), where v
is called the parameter of interest and A is included to complete the specification
and commonly called a nuisance parameter. Usually, but not necessarily, ¥ and
A are variation independent in that (2 is the Cartesian product Q. x €2;. That
is, any value of ¥ may occur in connection with any value of A. The choice of
Y is a subject-matter question. In many applications it is best to arrange that v
is a scalar parameter, i.e., to break the research question of interest into simple
components corresponding to strongly focused and incisive research questions,
but this is not necessary for the theoretical discussion.

It is often helpful to distinguish between the primary features of a model
and the secondary features. If the former are changed the research questions of
interest have either been changed or at least formulated in an importantly differ-
ent way, whereas if the secondary features are changed the research questions
are essentially unaltered. This does not mean that the secondary features are
unimportant but rather that their influence is typically on the method of estima-
tion to be used and on the assessment of precision, whereas misformulation of
the primary features [eads to the wrong question being addressed.

We concentrate on problems where £24 is a subset of RY i.e., d-dimensional
real space. These are so-called fully parametric problems. Other possibilities
are to have semiparametric problems or fully nonparametric problems. These
typically involve fewer assumptions of structure and distributional form but
usually contain strong assumptions about independencies. To an appreciable
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extent the formal theory of semiparametric models aims to parallel that of
parametric models.

The probability model and the choice of yr serve to translate a subject-matter
question into a mathematical and statistical one and clearly the faithfulness of
the translation is crucial. To check on the appropriateness of a new type of model
to represent a data-generating process it is sometimes helpful to consider how
the model could be used to generate synthetic data. This is especially the case
for stochastic process models. Understanding of new or unfamiliar models can
be obtained both by mathematical analysis and by simulation, exploiting the
power of modern computational techniques to assess the kind of data generated
by a specific kind of model.

1.2 Role of formal theory of inference

The formal theory of inference initially takes the family of models as given and
the objective as being to answer questions about the model in the light of the
data. Choice of the family of models is, as already remarked, obviously crucial
but outside the scope of the present discussion. More than one choice may be
needed to answer different questions.

A second and complementary phase of the theory concerns what is sometimes
called model criticism, addressing whether the data suggest minor or major
modification of the model or in extreme cases whether the whole focus of
the analysis should be changed. While model criticism is often done rather
informally in practice, it is important for any formal theory of inference that it
embraces the issues involved in such checking.

1.3 Some simple models

General notation is often not best suited to special cases and so we use more
conventional notation where appropriate.

Example 1.1. The normal mean. Whenever it is required to illustrate some
point in simplest form it is almost inevitable to return to the most hackneyed
of examples, which is therefore given first. Suppose that Yi,...,Y, are inde-
pendently normally distributed with unknown mean p and known variance 002.
Here p plays the role of the unknown parameter ¢ in the general formulation.
In one of many possible generalizations, the variance o2 also is unknown. The
parameter vector is then (i, 52). The component of interest ¥ would often be



4 Preliminaries

but could be, for example, o2 or /o, depending on the focus of subject-matter
interest.

Example 1.2. Linear regression. Here the data are » pairs (y1,21),. .., (Vn,20)
and the model is that Y1, ...,Y, are independently normally distributed with
variance o2 and with

E(Yy) = a4+ Bx. (1.3)

Here typically, but not necessarily, the parameter of interest is ¢ = 8 and the
nuisance parameteris A = («, 02). Other possible parameters of interest include
the intercept at z = 0, namely «, and —a/ 8, the intercept of the regression line
on the z-axis.

Example 1.3. Linear regression in semiparametric form. In Example 1.2
replace the assumption of normality by an assumption that the ¥ are uncorrel-
ated with constant variance. This is semiparametric in that the systematic part
of the variation, the linear dependence on z;, is specified parametrically and the
random part is specified only via its covariance matrix, leaving the functional
form of its distribution open. A complementary form would leave the system-
atic part of the variation a largely arbitrary function and specify the distribution
of error parametrically, possibly of the same normal form as in Example 1.2.
This would lead to a discussion of smoothing techniques.

Example 1.4. Linear model. We have an n x 1 vector Y and an n x g matrix z
of fixed constants such that

E(Y) =28, cov(Y)=dc"l, (1.4)

where § is a ¢ x 1 vector of unknown parameters, / is the n x n identity
matrix and with, in the analogue of Example 1.2, the components independently
normally distributed. Here z is, in initial discussion at least, assumed of full
rank g < n. A relatively simple but important generalization has cov(Y) =
o2V, where V is a given positive definite matrix. There is a corresponding
semiparametric version generalizing Example 1.3.

Both Examples 1.1 and 1.2 are special cases, in the former the matrix z
consisting of a column of 1s.

Example 1.5. Normal-theory nonlinear regression. Of the many generaliza-
tions of Examples 1.2 and 1.4, one important possibility is that the dependence
on the parameters specifying the systematic part of the structure is nonlinear.
For example, instead of the linear regression of Example 1.2 we might wish to
consider

E(Yy) = a + Bexp(y k), (L.5)



