


Handbook of Physical Vapor Deposition (PVD) Processing

Donald M. Mattox

William Andrew is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

First edition 1998 Second edition 2010

Copyright © 2010, Donald M. Mattox. Published by Elsevier Inc. All rights reserved

The right of Donald M. Mattox to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@elsevier.com Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting *Obtaining permission to use Elsevier material*

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-8155-2037-5

For information on all Elsevier publications visit our web site at books.elsevier.com

Typeset by MPS Limited, a Macmillan Company, Chennai, India www.macmillansolutions.com

Printed and bound in The United States of America

10 11 12 13 14 15 10 9 8 7 6 5 4 3 2 1

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER

BOOK AID

Sabre Foundation

Handbook of Physical Vapor Deposition (PVD) Processing

Second edition

Dedication

To my wife Vivienne

Without Vivienne's constant support, encouragement, and editorial assistance, this edition would not exist.

Preface to First Edition

The motivation for writing this book is that there is no single source of information which covers all aspects of Physical Vapor Deposition (PVD) processing in a comprehensive manner. The properties of thin films deposited by PVD processes depend on a number of factors, and each must be considered when developing a reproducible process and obtaining a high product throughput and yield from the production line.

This book covers all aspects of Physical Vapor Deposition (PVD) process technology from the characterizing and preparing the substrate material, through deposition processing and film characterization, to post deposition processing. The emphasis of the book is on the aspects of the process flow that are critical to reproducible deposition of films that have the desired properties.

The book covers both neglected subjects such as film adhesion, substrate surface characterization, and the eternal processing environment, as well as widely discussed subjects such as vacuum technology, film properties, and the fundamentals of individual deposition processes. In this book the author relates these subjects to the practical issues that arise in PVD processing, such as contamination control and substrate property effects on film growth, which are often not discussed or even mentioned in the literature. By bringing these subjects together in one book, the author has made it possible for the reader to better understand the interrelationship between various aspects of the film deposition processing and the resulting film properties. The author draws upon his long experience with developing PVD processes, troubleshooting the processes in the manufacturing environment, and teaching short courses on PVD processing, to not only present the basics but to provide useful hints for avoiding problems, and solving problems when they arise. Some examples of actual problems and solutions ("war stories") are provided as footnotes throughout the text. The organization of the text allows a reader who is already knowledgeable in the subject to scan through a section and find discussions that are of particular interest. The author has tried to make the subject index as useful as possible so that the reader can rapidly go to sections of particular interest. Extensive references allow the reader to pursue subjects in greater detail if desired.

An important aspect of the book is the useful reference material presented in the Appendices. A glossary of over 2500 terms and acronyms will be especially useful to those individuals that

are just entering the field and those who are not fully conversant with the English language. Many of the terms are colloquialisms that are used in the field of Surface Engineering.

The author realizes that covering this subject is a formidable task, particularly for one person, and that this effort is incomplete at best. He would like to elicit comments, corrections, and additions, which may be incorporated in a later edition of the book. In particular, he would like to elicit "war stories" of actual problems and solutions. Credit will be given for those that are used.

Donald M. Mattox Albuquerque, NM

Preface to Second Edition

The motivation and premise of the first edition is still applicable, but times have changed! Given a term (or an author) and any of the search engines, a vast amount of information is available to the reader on the Internet. In the second edition, I have taken particular care to have terms, synonyms, acronyms, antonyms, and related terms that can be searched for on the internet for more information. There have been some major changes in processing techniques in the last ten years, namely the introduction of HIPIMS and HIPIMS+, the increased use of chemical vapor precursors in reactive PVD processing, and the increased development of thick and nanolayered PVD coatings, particularly for tribological applications. The importance of gas/vapor flow and control in reactive PVD and PECVD processes has led to the addition of Chapter 4 on "The Sub-Atmospheric Processing Environment" and the change of the title of Chapter 3 from "The Low-Pressure Gas and Vacuum Processing Environment" to "The "Good" Vacuum (Low Pressure) Processing Environment."

Donald M. Mattox Management Plus, Inc. Albuquerque, NM March 2010

Acknowledgements

The author would like to thank Sandia National Laboratories for supporting his work in PVD processing for many years. He would also like to thank the Society of Vacuum Coaters for permission to use many of the figures that were developed for the *Education Guides to Vacuum Coating Processing* (SVC Publications – 2009). These guides are one-page descriptions of various aspects of PVD processing written in order to "chunk" the information for easy learning.

Most of all, the author would like to thank his wife, Vivienne, for the encouragement and vast amount of help that have made this second edition possible.

Acronyms Used in Vacuum Coating and Surface Engineering

Α

a (α) Amorphous (Example: a-Si), Optical adsorption coefficient (cm⁻¹)

A Ampere Å Ångstrom

AAS Atomic absorption spectroscopy

ABS Acrylonitrile butadiene styrene; Alky-benzene-sulfonate detergent

ABSTM Arc-bonded sputtering

ACGIH American Conference of Governmental Industrial Hygienists

a-C Amorphous carbon

a-C:H Amorphous hydrogen-containing carbon (one form of diamond-like carbon)

AC Alternating current

ACS American Chemical Society
AEM Analytical electron microscopy
AES Auger electron spectroscopy

AESF American Electroplaters and Surface Finishers

AF Audio frequency

AFM Atomic force microscope; Atomic force microscopy; Abrasive flow

machining

AIMCAL Association of Industrial Metallizers, Coaters and Laminators, Inc.

AIP American Institute of Physics
ALD Atomic layer deposition

AMLCD Active-matrix liquid crystal display
AMR Anisotropic magnetoresistive

amu Atomic mass unit

ANSI American National Standards Institute

AO Atomic oxygen

APC Adaptive process control

APCVD Atmospheric pressure chemical vapor deposition

xxvi Acronyms Used in Vacuum Coating and Surface Engineering

APGD Atmospheric pressure glow discharge

APIMS Atmospheric pressure ionization mass spectrometry

APP Atmospheric pressure plasma APS American Physical Society

AR Antireflective

ARAS Antireflective/antistatic
ARC Antireflective coating

ARE Activated reactive evaporation

ARF Argon fluoride

ARIP Activated reactive ion plating

ARO After receipt of order

ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning

Engineers

ASIC Application-specific integrated circuit

ASM International (previously American Society for Metals; now ASM

International)

ASME American Society of Mechanical Engineers
ASNT American Society for Non-destructive Testing

ASQC American Society for Quality Control
ASTM American Society for Testing and Materials
atm Atmosphere (usually standard atmosphere)

at% Atomic per cent

AVEM Association of Vacuum Equipment Manufacturers (more correctly known as

AVEM International)

AVS The society that used to be known as the American Vacuum Society

B

B Magnetic field (vector)
BAG Bayard–Alpert gauge

BARE Bias active reactive evaporation

BBAR Broad band antireflection

bcc Body-centered cubic (crystallography)
BOPP Biaxially oriented polypropylene

bp Boiling point
BP Bandpass (filter)

BPSG Borophosphosilicate glass

BRDF Bidirectional reflectance distribution function (light)

BSC Black sooty crap

C

Velocity of light in a vacuum, crystalline c

C Capacitance; Degrees centigrade; Coulomb; ceiling

CAD Computer-aided design

CAM Computer-aided manufacturing

Cathodic arc physical vapor deposition **CAPVD**

CAS Chemical abstract service

Crosslinking by activated species of inert gas CASING Copper-accelerated acetic acid salt spray **CASS**

Cubic centimeter cc

CCAI Chemical Coaters Association International

CCC Chromate conversion coating CCD Charged-coupled device

CCW Counterclockwise

cd Candela

Compact disc; Critical dimension; Cross direction CD

CDG Capacitance diaphragm gauge

Chlorodimethylsilane **CDMS** CD-R Compact disc-recordable CE Comformité européenne

CEVC Completely enclosed vapor cleaner

Conflat (vacuum flange) CF^{TM} **CFC** Chlorofluorocarbon CFC-111 Trichloroethane

CFC-113 Trichlorotrifluoroethane cfm Cubic feet per minute cfs Cubic feet per second

CGA Compressed Gas Association

Centimeter-gram-second system of measurement cgs

CIE Commission International de l'Eclairage (International Commission on

Illumination)

CIGS Copper-indium-gallium-diselenide

CLA Center line average

CLEO Conference on Laser and Electro-Optics

cm Centimeter

cmh Cubic meters per hour

Converting machinery/materials **CMM**

CMOS Complementary metal oxide semiconductor

CMP Chemical-mechanical polishing; Chemical-mechanical planarization

xxviii Acronyms Used in Vacuum Coating and Surface Engineering

CN Coordination number

CNDP Cold neutron depth profile

COO (CoO) Cost of ownership
CNT Carbon nanotube
CPP Cast polypropylene

CPWR Coupled plasmon-waveguide resonance

CrP Chromium-rich oxide passivation

CRT Cathode ray tube

CSP Concentrated solar power (solar thermal)

CTE Coefficient of thermal expansion

CTMS Chlorotrimethylsilane
C-V Capacitance-voltage
CVD Charmingle season deposition

CVD Chemical vapor deposition

CW Clockwise

D

d Day

dc Direct current (preferable to DC)
D-CVD Dielectric-chemical vapor deposition

DBD Dielectric barrier discharge

DCS Dichlorosilane

di- 2; Two
DI Deionized
Diff Diffusion r

Diff Diffusion pump

DIO Deionized and -ozonated (water)

DIW Deionized water
DLC Diamond-like carbon
DLF Diamond-like films

DMS Dual magnetron sputtering

DMSO Dimethyl sulfoxide

DOE Department of Energy (US); Design of experiments

DOI (Doi) Digital object identifier (intellectual property)

DOP Dioctyl phthalate

DOT Department of Transportation

DOVID Diffractive optically variable image device

DP Diffusion pump

DRAM Dynamic random access memory

DTIC Defense Technical Information Center (US)

Directed vapor deposition DVD

Deep ultraviolet DUV

Dense wavelength division multiplexing **DWDM**

dwt Pennyweight

E

E Emissivity; Electric field (vector); Elastic

modulus

e Exponential EB (eb) Electron beam e-beam Electron beam

ECD Electrochemical deposition **ECM** Electrochemical machining **ECR** Electron cyclotron resonance **ECS** Electrochemical Society Electrodischarge machining **EDM EDX** Energy-dispersive X-ray

EDTA Ethylene diamine tetraacetic acid **EELS** Electron energy loss spectroscopy

EHC Electrolytic hard chrome

EIES Electron impact emission spectroscopy

EL Electroplated

ELD Electroluminescent display (flat panel)

Electromigration EMemf Electromotive force

Electromagnetic interference **EMI**

EN Electroless nickel

EPA Environmental Protection Agency

epi **Epitaxial**

EPMA Electron probe X-ray microanalysis

ERA Evaporative rate analysis **ERD** Elastic recoil detection

ES&H Environmental Safety and Health

ESCA Electron spectroscopy for chemical analysis

ESD Electrostatic discharge

EU European Union **EUV** Extreme ultraviolet

eV electron volt

F

F Farad; Free machining (steel)

FC Fault classification
fcc Face centered cubic
FD Fault detection
FDD Floppy disc drive
FEC Field emission cathode

FED Field emission display; Field emission diode FE-SEM Field emission-scanning electron microscopy

FET Field effect transistor

FF Fill factor

FIB Focused ion beam
FIFO First in first out
FIM Field ion microscopy

FLIR Forward-looking infrared (7.5 to 12 μm)

FPC Fixed process control; Flexible printed circuits

FPD Flat panel display fpm Feet per minute

FTIR Fourier transform infrared FTO Fluorine-doped tin oxide

G

g Unit of gravitational acceleration; Gram

G Giga (suffix for 10⁹); Unit of magnetic field strength (Gauss); Gallons; Unit

of acceleration due to gravity

GANA Glass Association of North America GDMS Glow discharge mass spectrometry

GDOES Glow discharge optical emission spectroscopy

GFCI Ground fault circuit interrupter
GLAD Glancing angle deposition

GPM Gallons per minute

gr Grain

GWP Global warming potential

Н

h Planck's constant; Hour; Hecto (10²)
H Henry (unit of inductance); Hardness

Hollow cathode-assisted deposition HAD

Hazardous air pollutants HAP

Heat-affected zone; Hazardous (material) HAZ

Hollow cathode discharge **HCD HCFC** Hydrochlorofluorocarbon

Hollow cathode lamp; Hydrochloric acid HCL

hcp Hexagonal close-packed

HDD Hard disk drive

HDP-CVD High density plasma chemical vapor deposition

High energy electron diffraction **HEED**

High efficiency particle air (see also ULPA) **HEPA**

HF Hydrofluoric acid

Hot filament chemical vapor deposition **HFCVD**

HFE Hydrofluoroether

HIP Hot isostatic processing

High power impulse magnetron sputtering **HIPIMS** Modulated pulse power (MPP) HIPIMS HIPIMS+

Knoop hardness HK

HLB Hydrophilic-lipophilic balance

HMC Hybrid micro circuit

Hexamethylcyclotrisiloxane **HMCTSO HMDSO** Hexamethyldisiloxane

Hectopascals hPa

High power pulse magnetron sputtering **HPPMS**

HRI High refractive index HV Vickers hardness

HVOF High velocity oxygen fuel **HWOT** Half wave optical thickness Hz Hertz (cycles per second)

ı

Prefix used to indicate that the film was formed using beam-type film ion i

deposition. Examples: i-C; i-BN

Ion-assisted deposition IAD

IARC International Agency for Research on Cancer (establishes carcinogenicity of

materials)

IBA Ion beam analysis

Ion beam-assisted deposition **IBAD** Ion beam-assisted etching **IBAE**

xxxii Acronyms Used in Vacuum Coating and Surface Engineering

IBED Ion beam-enhanced deposition IBESTTM Ion beam surface treatment

IC Integrated circuit

ICB Ionized cluster beam (deposition)
ICP Inductively coupled plasma

ICP-MS Inductively coupled plasma mass spectrometer

ID Internal diameter

IDLH Immediately dangerous to life or health

IDM Integrated device manufacturing

IEEE Institute of Electrical and Electronic Engineers

IES Institute of Environmental Sciences

IG Ionization gauge

IGU Insulated glass unit (double glazing)

ILD Interlayer dielectric IMD Intermetal dielectric

IMEMS Integrated microelectromechanical systems

I_{oc} Open circuit current (solar cell)

IP Intellectual property
IPA Isopropyl alcohol

IPC Institute for Interconnecting and Packaging Electronic Circuits; International

patent classification

iPVD Ionized physical vapor deposition I-PVD Ion-assisted physical vapor deposition

IR Infrared

I_{sc} Short circuit current (solar cell)

ISCST International Society of Coating Science and Technology

ISHM International Society for Hybrid Microelectronics

ISO International Standards Organization

ISS Ion scattering spectroscopy

IT Information technology; Internet transactions

ITO Indium–tin oxide alloy (90:10)

I-V Current-voltage
IVD Ion vapor deposition

IWFA International Window Film Association

J

Joule; Electric current (vector)

JVST Journal of Vacuum Science and Technology