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Preface

If it were possible to use a single non-composite material for a specific
function, the material would have basic properties directly applicable to the
design calculations. The material would also have many other properties
that would rank it against alternate materials. For example, Young’s modulus
is a basic material property used in design, while properties such as fire
resistance, impact resistance and jointability would be ranking properties.
Once the material has been manufactured into a component, other ranking
properties must be considered, such as the method of material failure: ductile
collapse, brittle failure or fatigue? These questions are asked of individual materials.

If a suitable material does not exist for a function, then two or more
materials are combined to form a composite. Steel bars, which are strong in
tension, are added to the weak tensile section of a concrete beam to increase
the beam’s tensile resistance. Consequently, composite materials are used
where there are specified needs, for example in the building industry and in
aerospace engineering.

Each new use of a composite will have different material requirements.
The composite will be required to resist such events as impact loading,
vibrational loading, delamination, cracking and fatigue, to name but a few.
Each composite material property must be assessed and quantified, ideally
in real time and in the real world environment, although this is not always
possible.

Research workers, engineers and designers need to use the latest and finest
available techniques to assess the properties of composite materials. This
means, in the vast majority of cases, carrying out numerical analysis and
modelling of the composites, subjected to a variety of loading. However,
many of these analyses are carried out in isolation of others working in a
similar area of research. Many of these areas have their own journals and
cross-fertilisation of ideas and results do not always take place.

This book brings together a wide range of composite material disciplines.
The book gives the reader ideas and references to the best practice, and to
areas of common problems. The book shows where common solutions of
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numerical analysis and modelling have been used successfully. The thirteen
chapters in the book are divided into eight topic areas: aerospace industry;
cylindrical shells and panels; practical construction problems; damage
tolerance; interface regions; temperature effects; fibre debonding and woven
fabrics. Each topic area can be briefly described as follows:

The aerospace industry

Chapter 1 provides an insight into the behaviour of composite rotor-blades,
their numerical modelling and the associated analysis methodologies. Chapter
2 describes where advanced composite materials are used in airframes, the
types of defects experienced in composite materials, generalised defect type
and defect repair modelling.

Cylindrical shells and panels

Chapter 3 develops a numerical procedure for the free vibrational analysis
of fibre reinforced laminated cylindrical shells. Numerical results are developed.
Chapter 4 analyses and models cylindrical pressure vessels consisting of
advanced fibre/resin composites and equipped with metallic liners. The
optimal design of multi-layer composite pressure vessels is also discussed.
Chapter 5 considers the analysis of the stress distribution around openings
in finite-width composite panels. Design aspects such as strength prediction,
shape optimisation and delamination are also considered.

Practical construction problems

Chapter 6 models the repair of a crater produced by a chemical explosion
in the support material under a runway. The model is used to assess and design
a runway crater repair. Chapter 7 shows that it is feasible to derive the
macroscopic nonlinear behaviour of masonry from the knowledge of the
constituent materials, through the homogenisation theory for periodic media.
The softening character of the constitutive damage and plasticity laws is also
modelled.

Damage tolerance

Chapter 8 describes an approach to identify and calibrate damage and fracture
mechanics models for composites. Several constitutive laws suitable to
characterise composite linear and nonlinear behaviour are outlined. The
modelling of composite, monolayered, multilayered and sandwich shells and
solids are included. Chapter 9 discusses approaches to damaged composites
to estimate stresses, stiffness reductions and cumulative non-elastic strains.
Cumulative damage models are then presented, followed by a discussion of
a fatigue life prediction model.

Interface regions
Chapter 10 employs micromechanics to characterise the stress states and
underlying mechanics of the interface regions of composites. The role of a
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ductile interlayer in promoting fracture resistance of brittle polymer matrix
composites is also investigated.

Temperature effects

Chapter 11 reviews the literature in the area of metal matrix composites
subjected to creep due to moderate temperature cycles. The chapter also
discusses the relevant data required to make accurate calculations of
composite thermal-cycling creep rates. Three approaches to the modelling
are discussed and applied to the design of high temperature composites.

Fibre debonding

Chapter 12 reviews experimental techniques of fibre debonding and sliding,
used in the determination of the interfacial properties of ceramic matrix
composites. Detailed descriptions of tests are presented, including discussion
of the effects of fibre surface topography and fibre surface treatments on the
frictional behaviour of fibres in ceramic composites.

Woven fabrics
Chapter 13 presents a composite stiffness model for the prediction of
thermoelastic properties of orthogonal plain weave fabric laminates.

My thanks go to my family for their support, to the chapter authors for

their contributions and to Blackie A&P for their help, guidance, understanding
and unfailing ability to remember deadlines!

JWB
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1 Analysis of composite rotor blades
OMRI RAND

1.1 INTRODUCTION

The purpose of this chapter is to provide an insight into the behavior of
composite rotor blades, their modeling and the associated analysis
methodologies. From a structural point of view, blades are usually treated
as slender structures. This category includes all structures where one of their
dimensions is much larger than the others. The discussion in this chapter
will be focused on the analysis of helicopter blades, however, the structural
modeling is also applicable to general machinery blades or any other similar
slender structure. Due to their slenderness, the notion ‘beam’ is frequently
used to describe the blade structure. The assumption of a slender structure
influences the deformation presumptions, the boundary conditions and the
treatment of the distributed and the tip loads.

The initial motivation to design helicopter blades using composites emerged
from their preferable fatigue characteristics and the simplicity they offer in
the design and manufacturing of various aerodynamic surface geometries.
However, the possibility to improve the blade structural dynamics response,
by applying appropriate fiber orientations that will induce advantageous
structural couplings, seems to be more attractive. Currently, such ‘aeroelastic
tailoring’ is one of the main research goals and has already proved to be feasible.

Generally, the structural analysis of composite beams poses many modeling
and computational challenges. Analysis tools for isotropic beams are
inappropriate in this case. This is because the well-known Bernoulli—Euler
assumptions are not valid for composite beams, since composite materials,
and in particular orthotropic materials, couple axial stress with shear strain
and couple shear stress with axial strain. Thus, a detailed description of the
warping (known also as ‘shear deformation’), and predominantly its out-
of-plane component, is inevitable. This requirement for a detailed warping
description is added to other modeling issues that characterize the structural
dynamics of rotating blades. Among these, the most important are the
geometrical nonlinearities and the significant loads—deformation dependency.
Both of the above issues force a nonlinear (and sometimes iterative) solution.

In reality, rotating blades undergo small strains, although moderate
rotations and large displacements may take place. Thus, since the focus of
this chapter is in the composite related structural effects, the involved
geometrical nonlinearities will not be discussed here. However, in order to



