

OPTICAL BIOSENSORS

TODAY AND TOMORROW

Frances S. Ligler and Chris Rowe Taitt

Second Edition

TP212.3 062 Ex2

OPTICAL BIOSENSORS: TODAY AND TOMORROW

Edited by

FRANCES S. LIGLER

and

CHRIS ROWE TAITT

Center for Bio/Molecular Science & Engineering
US Naval Research Laboratory
Washington DC, USA

ELSEVIER

Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo

Elsevier

Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands Linacre House, Jordan Hill, Oxford OX2 8DP, UK

1st Edition, *Optical Biosensors: Present and Future*, published 2002. 2nd Edition, *Optical Biosensors: Today and Tomorrow*, published 2008.

Copyright © 2008 Elsevier B.V. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-444-53125-4

For information on all Elsevier publications visit our website at books.elsevier.com

Printed and bound in Hungary

08 09 10 11 12 10 9 8 7 6 5 4 3 2 1

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER

BOOK AID

Sabre Foundation

OPTICAL BIOSENSORS: TODAY AND TOMORROW

Dedication

The authors thank Kristyn Thiel for her capable assistance in the compilation of these chapters. We acknowledge financial support from NRL Work Unit 62-6006. We dedicate this book to our husbands, George and John, whose support gave us the courage to even contemplate undertaking a second edition of this book.

Preface

When we prepared the first edition of Optical Biosensors, titled Optical Biosensors: Present and Future, the field of optical biosensors was rapidly evolving on the coattails of advances in optical telecommunications. Since that time, there has been an explosion of new and exciting science and engineering that has direct bearing on the ability of optical biosensors to have increased and widespread application. For instance, advances in the "nano" realm - nanoelectronics, nanomaterials, nanofluidics - have paved the way for development and integration of new methods and materials for signal generation and transduction, as well as for miniaturization and automation of existing systems. The inherently cross-disciplinary nature of biosensing creates fertile ground for new perspectives for addressing critical challenges. In our experience, the best team for creating biosensors includes experts not only in biochemistry, chemistry, and optical physics, but also mechanical, chemical, electrical and bio-engineering. For this reason, Optical Biosensors: Today and Tomorrow includes a number of chapters describing future relevant technologies, in addition to chapters describing state-of-the-art optical biosensor systems.

This book is divided into two parts. "Optical Biosensors: Today" includes comprehensive discussions of technologies that have proven utility and, in many cases, are commercially available now. Seven of these chapters have been updated from the previous edition of *Optical Biosensors*, with descriptions of highly noteworthy developments over the last 6 years in the areas of biosensors based on fiber optics and planar waveguides, flow immunosensors, electrochemiluminescence, and surface plasmon resonance. Due to the increasing popularity of surfaceenhanced Raman sensors, a chapter on this technology has been added. "Optical Biosensors: Tomorrow" consists of discussions of science and technologies that the editors consider exciting in terms of their potential

x Preface

to revolutionize future biosensor systems. Chapters with new material on aptamers, molecularly imprinted polymers, intracellular sensing, and microfluidics are again featured, and new chapters on cavity ring down spectroscopy, optical cantilevers, microarrays, single-domain antibodies, and nanoparticles have been added.

Contributors were tasked with describing the underlying principles behind each technology, detailing the demonstrated and potential applications, and providing a (hopefully!) objective view of the advantages and disadvantages of the technology. We also asked them to provide a short history of their system or science, not only to provide a context for the current state of the art, but also to recognize the pioneering work on which the present and the future of optical biosensing is based. Finally, the authors gaze into their crystal balls to envision the place of their technology in the world of tomorrow. These last observations are meant to be both candid and thought-provoking.

The successful marriage of biomolecules, cells, and tissues with optoelectronic detection platforms, not to mention the transformation of such tools into user-friendly systems, requires broad understanding of the possible scientific and technical options. This task becomes less daunting with the ability to reference factual summaries and informed opinions provided by the leaders in the field. We therefore thank our contributing authors for the exposition of their insights into this rapidly expanding field. We are also very grateful to both the pioneering spirits who have historically led the field and the hardy souls who continue to make breakthroughs in biological sensing. We thank them all for their hard work, willingness to share their ideas and perspicacity, and their devotion to a field whose challenges continue to change and inspire.

And finally, thank you for opening this book. It is for you, the curious reader, that *Optical Biosensors: Today and Tomorrow* has been created.

Fran and Chris

List of Contributors

Mar Alvarez

Centro Nacional de Microelectronica (CNM) **Biosensors Group IMM-CNM-CSIC** Madrid Spain

Email: malvarez@imm.cnm.csic.es

George P. Anderson

Center for Bio/Molecular Science & Engineering Naval Research Lab Code 6900 4555 Overlook Avenue, SW Washington, DC 20375-5348 **USA**

Email: george.anderson@nrl.navy.mil

Jutta Bachmann

Bachmann Consulting Nokkefaret 12 1450 Nesoddtangen Norway

Email: info@jutta-bachmann.com

Israel Biran

Applied CleanTech Inc. Email: ibiran01@yahoo.com.

Diane A. Blake

Department of Biochemistry Tulane University School of Medicine New Orleans, LA 70112-2699

USA

Email: blake@tulane.edu

Y. Charles Cao

Department of Chemistry University of Florida Leigh Hall Gainesville, FL 32611 USA

Email: cao@chem.ufl.edu

Eun Jeong Cho

Department of Chemistry and Biochemistry University of Texas at Austin Austin, TX 78712 USA

Email: euncho@mail.utexas.edu

James B. Delehanty

Center for Bio/Molecular Science & Engineering Naval Research Lab Code 6900 4555 Overlook Avenue, SW Washington, DC 20375-5348 USA

Email: james.delehanty@nrl.navy.mil

Andrew D. Ellington

Department of Chemistry and Biochemistry University of Texas at Austin Austin, TX 78712 USA Email: andy.ellington@mail.utexas.edu

Ellen R. Goldman

Center for Bio/Molecular Science & Engineering Naval Research Lab

Code 6900 4555 Overlook Avenue, SW Washington, DC 20375-5348 USA

Email: ellen.goldman@nrl.navy.mil

Andrew Hayhurst

Southwest Foundation for Biomedical Research Department of Virology and Immunology San Antonio, TX 78227 USA

Email: ahayhurst@sfbr.org

Jiří Homola

Academy of Sciences of the Czech Republic Institute of Photonics and Electronics 182 51 Prague Czech Republic Email: homola@ufe.cz

James W. Jacobson

Luminex Coporation 12212 Technology Blvd. Austin, TX 78727 USA

Email: jwjacobs@luminexcorp.com

Thomas O. Joos

NMI Natural and Medical Sciences Institute University of Tübingen Markwiesenstr. 55 72770 Reutlingen Germany Email: joos@nmi.de

Huizhi Kang

Department of Chemistry University of Florida

Leigh Hall Gainesville, FL 32611 USA

Email: hkang@chem.ufl.edu

Anne W. Kusterbeck

Center for Bio/Molecular Science & Engineering Naval Research Lab Code 6900 4555 Overlook Avenue, SW Washington, DC 20375-5348 USA

Email: anne.kusterbeck@nrl.navy.mil

Laura M. Lechuga

Centro Nacional de Microelectronica (CNM)
Biosensors Group
IMM-CNM-CSIC
Madrid
Spain
Email: laura@imm.cnm.csic.es

Joo-Woon Lee

Division of Liberal Arts and Sciences Chungju National University Chungju, Chungbuk, 380-702 Korea Email: jwoonlee@chungju.ac.kr

Kevin K. Lehmann

Department of Chemistry University of Virginia Charlottesville, VA 22904 USA

Email: lehmann@virginia.edu

Frances S. Ligler

Center for Bio/Molecular Science & Engineering Naval Research Laboratory 4555 Overlook Avenue, SW Washington, DC 20375-5320 USA

Email: frances.ligler@nrl.navy.mil

Jinny L. Liu

Center for Bio/Molecular Science & Engineering Naval Research Lab Code 6900 4555 Overlook Avenue, SW Washington, DC 20375-5348 USA

Email: jinny.liu@nrl.navy.mil

Igor L. Medintz

Center for Bio/Molecular Science & Engineering Naval Research Lab Code 6900 4555 Overlook Avenue, SW Washington, DC 20375-5348 USA

Email: igor.medintz@nrl.navy.mil

Miguel Moreno

Centro Nacional de Microelectronica (CNM) Biosensors Group IMM-CNM-CSIC Madrid Spain

Email: mmoreno@imm.cnm.csic.es

David Myszka

Center for Biomolecular Interaction Analysis University of Utah Salt Lake City, UT 84132 USA

Email: dmyszka@cores.utah.edu

Meghan O'Donoghue

Department of Chemistry University of Florida Leigh Hall Gainesville, FL 32611 USA

Email: mod@chem.ufl.edu

Sergey A. Piletsky

Cranfield Health Cranfield University Silsoe, Beds, MK45 4DT UK

Email: s.piletsky@cranfield.ac.uk

Manjula Rajendran

Althea Technologies, Inc., 11040 Roselle Street, San Diego, CA 92121 USA

Email: mrajendran@altheatech.com

Mark M. Richter

Department of Chemistry Missouri State University Springfield, MO 65897 USA

Email: MarkRichter@missouristate.edu

Kim Sapsford

US Food and Drug Administration CDRH/OSEL/DB Silver Spring, MD 20993

USA

Email: kim.sapsford@fda.hhs.gov

Abraham D. Stroock

School of Chemical and Biomolecular Engineering Cornell University Ithaca, NY 14850 USA

Email: ads10@cornell.edu

Chris Rowe Taitt

Center for Bio/Molecular Science & Engineering Naval Research Lab Code 6900 4555 Overlook Avenue, SW Washington, DC 20375-5348 **USA**

Email: chris.taitt@nrl.navy.mil

Weihong Tan

Department of Chemistry University of Florida Leigh Hall Gainesville, FL 32611 **USA**

Email: tan@chem.ufl.edu

Peter B. Tarsa

Massachusetts Institute of Technology Cambridge, MA 02139 **USA**

Email: ptarsa@mit.edu

Richard B. Thompson

Department of Biochemistry and Molecular Biology University of Maryland Baltimore, MD 21201

USA

Email: rthompso@umaryland.edu

Anthony P.F. Turner

Cranfield Health Cranfield University Silsoe, Beds, MK45 4DT UK

Email: a.p.turner@cranfield.ac.uk

Tuan Vo-Dinh

Fitzpatrick Institute for Photonics Duke University Durham, NC 27708-0281 USA

Email: tuan.vodinh@duke.edu

David R. Walt

Department of Chemistry **Tufts University** Medford, MA 02155 USA

Email: david.walt@tufts.edu

Lin Wang

Department of Chemistry University of Florida Leigh Hall Gainesville, FL 32611

USA

Email: lwang@chem.ufl.edu

Sinclair S. Yee

Department of Electrical Engineering University of Washington Seattle, WA 98105 USA

Email: yee@ee.washington.edu

Xin Yu

Department of Chemistry Tufts University Medford, MA 02155 USA

Email: Xin.Yu@tufts.edu

Kirill Zinoviev

Centro Nacional de Microelectronica (CNM) Biosensors Group IMM-CNM-CSIC Madrid Spain

Email: Kirill.Zinoviev@cnm.es

Contents

Preface		ix
Li	ist of Contributors	
PA	ART I OPTICAL BIOSENSORS: TODAY	
1	Optrode-based fiber optic biosensors (bio-optrode) Israel Biran, Ph.D., Xin Yu, Ph.D., and David R. Walt, Ph.D.	3
2	Evanescent wave fiber optic biosensors George P. Anderson, Ph.D. and Chris Rowe Taitt, Ph.D.	83
3	Planar waveguides for fluorescence biosensors Kim Sapsford, Ph.D., Chris Rowe Taitt, Ph.D., and Frances S. Ligler, D.Phil., D.Sc.	139
4	Surface plasmon resonance biosensors Jiří Homola, Ph.D., Sinclair S. Yee, Ph.D., and David Myszka, Ph.D.	185
5	Flow immunosensors Anne W. Kusterbeck, M.S., and Diane A. Blake, Ph.D.	243
6	Fluorescence lifetime biosensing: Entering the mainstream <i>Richard B. Thompson, Ph.D.</i>	287
7	Electrochemiluminescence Mark M. Richter, Ph.D.	317
8	Plasmonic SERS molecular sentinels: A new biosensing approach Tuan Vo-Dinh, Ph.D.	385
PA	ART II OPTICAL BIOSENSORS: TOMORROW	
9	Cavity ring-down biosensing Peter B. Tarsa, Ph.D. and Kevin K. Lehmann, Ph.D.	403