

Zheng Qin
Jiankuan Xing
Xiang Zheng

Software Architecture

With 161 figures

W T ot B AL 9 Springer

BBEMREB (CIP) #iE
AR R4 M= Software Architecture / EAE, 6

T, HAE . —HLM BT K2 W AREE . 2007.10
ISBN 978-7-308-05453-9

L[5 T.OR-QOff @ WHMH- RELEH
IV.TP311.5

o E A B FE CIP 8RBT (2007) 56 169644 &5

Not for sale outside Mainland of China

1 A3 A BRE H) At X B

BHEREN
T AR Am F

#HE &t Joe Piliero

HERE M B LER

AR AT WiIC k2 i ARAL
M %k ; http//www zjupress.com
Springer- Verlag GmbH
M 3E ; http:/www.springer.com

13 BRI K5 iR et B B HERR ol

Ep Bl BHWEADRARALHE

vin A 787mmX 960mm 1/16

En #* 22

¥ B, O719F

KR EM #& 20074 10 A% 1AT 20074 10 B % 1 RENR

3 € ISBN 978-7-308-05453-9 (#f VT K 2% 4 AR i)
ISBN 978-3-540-74342-2 (Springer- Verlag GmbH)

E# 120005 '

RRILERE B3R EEESE AHEEHR
B VLR RS R AT ER BRI L 3 (0571)88072522

Preface

Building software nowadays is far more difficult than it can be done several decades
ago. At that time, software engineers focused on how to manipulate the computer to
work and then solve problems correctly. The organization of data and
implementation of algorithm were the crucial process of software designing then.
However, more and more tasks in low level, such as memory management and
network communication, have been automatized or at least can be reused with little
effort and cost. Programmers and designers, with the help of high level programming
languages and wieldy development tools, can pay more attention to problems, rather
than bury themselves into the machine code manuals. However, the side effect of
these utilities is that more complicated problems are given according to the
requirements from military, enterprise and so on, in which the complexity grows
rapidly day by day. We believe that software architecture is a key to deal with it.

Many people become aware of the existence of software architecture just
recently. Nevertheless, it in fact has a long history, which may surprise you. Before
the invention of C++or even C, some computer scientists had begun to notice the
concept of software structure and its influence to software development. In the
1990s, software architecture started its journey of bloom, when several communities,
workshops and conferences were held with a great amount of published articles,
books and tools. Today, software architect, the job of taking software designing,
analysis and dealing with different concerns and requirements from different
stakeholders, is considered as the center of development team.

But there is an ironical problem that most existing architects in fact do not take
any study or training in this field, some of whom even do not realize that software
architecture is a kind of realm requiring academic effort, just as artificial intelligence
or data mining. The reason is that software architecture has no widely-accepted
definitions and standards of basic theories and practical methods, which leads to
that there is almost no universal course about this subject. Meanwhile, the rapid
growth and division of software architecture result in too many branches and sub-
fields, most of which still keep non-dominant and unified. These changes aggregate

i Software Architecture

the trouble in learning even a subset of software architecture area. In this book, we
will provide an overview among the classic theories and some latest progresses of
software architecture and try to touch the software architecture’s essence.

This book is a collaboration of three authors: Zheng Qin, Jiankuan Xing and
Xiang Zheng More particularly, Professor Qin is the primary author who decides
the contents and issues what you can see in this book. And Jiankuan Xing organizes
the work of writing, and facilitates the cooperation with authors and other
contributers.

Targets

This book aims to give an introduction to the theory foundations, various sub-fields,
current research status and practical methods of software architecture. In this book,
readers can acquire the basic knowledge of software architecture, including why
software architecture is necessary, how we can describe a system’s architecture by
formal language, what architecture styles are popular for practice use and how we
can apply software architecture into the development of systems. Study cases, data,
illustrations and other materials which are released in the recent years will be used
to show the latest development of software architecture. This book can be used as
the learning material for touching software architecture,

How to Read This Book

We target to give readers an inside-out understanding of software architecture,
therefore this book is divided into two parts (not shown explicitly in content):

e Basic Theories: Chapter 1—Chapter 5

e Advance Topics: Chapter 6—Chapter 9

In detail, we give the overview descriptions for each chapter as follows:

Chapter 1. Introduction. The theme of this chapter is the basic introduction
to software architecture, where readers will see why we need it, how it emerged and
what its definitions look like. We hope to give readers a clear vision on it,
considering a great many misunderstanding and arguments’ presence. In addition,
with the development of research, concerns and usage of software architecture have
become different, which we will mention at the last section of this chapter.

Chapter 2. Architectural Styles and Patterns. Initially, the research on
software architecture emphasized the categorization of software in architectural
level. Some systems share the common structure and properties are classified into
one set in which the same vocabulary and similar models for representing these
systems can be used. Each vocabulary and models specified for a category are called
“architectural style”. What’s more, we abstract and represent some representative
structure and reuse them with style. Each structure is called an “architectural
pattern”. Architecture styles and patterns are very precise utilities for constructing

Preface Vi

complex systems. In Chapter 2, we provide descriptions, study cases and
comparison of them.

Chapter 3: Application and Analysis of Architectural Styles. After
characterizing several popular styles, we continue to offer a few study cases, each
of which combines more than one architectural style. Academically, this is called
“heterogeneous style constructing”. As a matter of fact, applied software always
uses multiple styles simultaneously, no matter how simple they are. The goal of
this chapter is to tie the abstract styles to practice use.

Chapter 4; Software .Architecture Description, How to describe software
architecture is the centric subject of architecture realm, because it is the foundation
to represent software design, perform effective communications among stakeholders
and measure systems’ behaviors according to requirements. In this chapter, we pay
attention to architectural formal description, which stands on the mathematic basis.
However, for UML, the language widely used as architecture representation in
practice, you can find excessive materials about it.

Chapter 5: Design Strategies in Architecture Level. This chapter gives you
a chance to touch the concept of architectural design with formal foundation. In
contrast to practical software development processes, such as RUP (Rational
Unified Process), formal architectural design strategies stress the relationship and
calculus of function space and structure space, both of which abstract the
development process performed in the real world. To get through with this chapter,
a fair capability of set theory and automata theory is required.

Chapter 6: Software Architecture IDE, Although software architecture is
useful for software development, using it with pure handwork incurs too much
overhead, and then time and cost, to the development process, which may obliterate
its benefits. That’s the key why software architecture was not popularly accepted
in the 1990s. Now, we have the handy assist, software architecture IDE. The
purpose of IDE is to enable an organization to manage its software architecture and
other related actions and processes in a way that meets business needs by providing
a foundational utility upon which design, communication, framework code generation
and validation can be carried out automatically.

Chapter 7. Evaluating Software Architecture. After the initial architectural
design is finished, any stakeholder would finger out whether this design is good or
not, whether it will contribute to a successful development and then output the
satisfying production or doom to crush resulting from the design defects. That’s the
evaluation’s task. In this chapter, currently widely-used evaluation methods are
discussed and compared. However, evaluation methods still lack the formal
foundation, and more focus on the experience and capability of participators.
Therefore, the description here will bring you the practical architectural methods
and technologies, based on which evaluation is performed.

Chapter 8: Flexible Software Architecture. Flexible software architecture
means the structure of a system which can metamorphose during runtime according

Wi Software Architecture

to users’ instructions, executing environment’s changes or other requirements and
the related actions and processes. That’s crucial for systems’ needs of self-healing
and self-adaptation abilities. The systems with these needs before normally mix the
structure metamorphosis code and application code, which insults more trouble in
maintaining and improving procedures. What’s more, failing to divide this confusion
causes the system as conceived and the system as built to diverge over time. In this
chapter, we give an introduction to what flexible software in architecture level looks
like and what the principles and organization patterns of constructing it are.

Chapter 9: A Vision on Software Architecture. This is a chapter far away
from theories, methods and technologies, in which the applications of software
architecture in current software industry and in other fields, such as medicine,
electronic engineering and military are presented in general. After that, we will
provide several future research directions of software architecture at the end of this
book.

Considering the relative independence of each chapter, readers can choose several
chapters they are interested in. But we recommend Chapter 1 should be read
carefully since it can help you understand other chapters easier and better. In
addition, you can find more detail and deeper description about some topics through
the reference materials we give.

Who Should Read This Book

The graduates and undergraduates whose majors are elated to software design and
development will benefit much from this book. Also, other people who are
interested in software architecture would be guided to this field by reading this
book. Then, experienced software designers and project leaders who want to adopt
architecture as the centric concerns and utility of their software development
process are our target readers, too. But they may suffer pain for a moment when
converting their original mind to the new world, from which they will at last benefit.
We assume our readers should have simple experience as follows. (Each capability
may only be involved in several chapters rather than the whole book)

e Programming using C++, Java or C#

e Software design (even a simple project would be fine)

e Software project management

Acknowledgements

It is a great pleasure to acknowledge the profound and original work of Software
Architecture Group of Tsinghua Univ., especially Jiankuan Xing (Chapters 1, 5, 7,
8) and Xiang Zheng (Chapters 3, 4). Their insights, collaboration and diligence have
been a constant source which gestates the publication of this book.

For the current years I have been considering the problems of software

Preface X

architecture. During the book’s writing, we have profited greatly by collaboration
with many people, including Kaimo Hu, who prepares lots of materials for Chapters
2 and 9. Meanwhile, he often inspired us with wide knowledge and ideas; and Juan
Wang who buried herself into various software architecture IDEs and taught us how
to use them in a great detail, which contributed much for Chapter 6. She is also
participating the XArch project focusing on ADL parsing and model generating, And
many thanks to Hui Cao, a nice reader who has inspected most manuscript and
offered valuable criticisms and comments.

Beijing Zheng Qin
June 2007

ADVANCED TOPICS
IN SCIENCE AND TECHNOLOGY IN CHINA

ADVANCED TOPICS
IN SCIENCE AND TECHNOLOGY IN CHINA

Zhejiang University is one of the leading universities in China. In Advanced Topics
in Science and Technology in China, Zhejiang University Press and Springer jointly
publish monographs by Chinese scholars and professors, as well as invited authors
and editors from abroad who are outstanding experts and scholars in their fields. This
series will be of interest to researchers, lecturers, and graduate students alike,

Advanced Topics in Science and Technology in China aims to present the latest and
most cutting-edge theories, techniques, and methodologies in various research areas in
China. It covers all disciplines in the fields of natural science and technology,
including but not limited to, computer science, materials science, the life sciences,
engineering, environmental sciences, mathematics, and physics.

Contents

1

Introduction to Software Architecture
1.1 A Brief History of Software Development

1.1.1 The Evolution of Programming Language — Abstract Level

1.1.2 The Evolution of Software Development—Concerns

1.1.3 The Origin and Growth of Software Architecture — ceweeccererrerreeeee

1.2 Introduction to Software Architecture «-«-=-e----

1.2.1 Basic Terminologies <=«
1.2.2 Understanding IEEE 1471—2000

123 Views IJSCd in Software Archltecture ensedsEsaramarsenera st s ans onssen
- 25

124 Why We Need Software Architecture

1.2.5 Where Is Software Architecture in Software Life Cycle
s enaas . sens . 31
- 32

1.3 Summary
References

Architectural Styles and Patterns «--«coocoeeesrereomnursmn e
2.1 Fundamentals of Architectural Styles and Patterns ---eeecererreeeeineneees

T R Brsrasessrssasrensen . 38
- 38

2.2 Pipes Filters
2.2.1 Style Description

2_22 Study (:ase T T LR TR TR TR
. - 42
- 42

2.3 Object-oriented
2.3.1 Style Description

232 Study Case «+ reeesererstaatess st i e s e
. .. 51
- 51

2.4 Event-driven
2.4.1 Style Description

242 Study Case Mah sadmesaseasmeasssasassaseaniiisissasacaasl ANl e teT RranAr R
ceeresaeaens . 62
renans hesneasessnaanan caeneacssensaane . 62
2.52 Study Case T I R T R
70
- 70

2.5 Hierarchical Layer
2.5.1 Style Description

2.6 Data Sharing
2.6.1 Style Description

262 Study (:ase Wee seceabser seaers asesen st s ese nra dansasaas aes van aRe IO AT AR N R

NYOLYSDPDNDDND—

15

29

34
34

39

43

55

72

Software Architecture

27 Virtual Machifle covcorcseeoreesrersoaseaaeanenesiusiteineinsiesesnoesonsaeses

2.7.1 Style Description
272 Study Case -+
2.8 Feedback Loop

2.8.1 Style Description

2.9 Comparison among Styles

2.10 Integration ofHeterogeneous Styles B
- 88

2.11 Summary
References

Application and Analysis of Architectural Styles R R LR RIYRYY

3.1 Introduction to SMCSP «--vereceeeees

3.1.1 Program Background

3.1.2 Technical Routes

3'13 Funct:ion Design mee retearetenta srt oo et oat snanse tun nnm s
3.2 System Realization ---

3.2.1 The Pattern Choice *-

322 Interaction Mechanism ««--c:--:-

3.2.3 Realization of Mobile Collaboratlon LRI R RPNy

324 Knowledgebased Des1gn

3.3 Summary
References ---

Software Architecture Description
4.1 Formal Description of .Software Architecture

4.1.1 Problems in Informal Description ««««sxreerereerieniinss

4.12 Why Are Formal Methods Necessary
4.2 Architectural Description Language
421 Introduction to ADL .

422 Comparing among Typical ADLS
- 133
- 135
- 136
- 141
-+ 143

4.2.3 Describing Architectural Behaviors

43 Study Case: WRIGHT System -+« ---

43.1 Description of Component and Connector
432 Description of Configuration

433 Description of Style «:-«sreereeee

434 CSP—Semantic Basis of Formal Behavior Descrlptlon
4.4 FEAL: An Infrastructure to Construct ADLS «=--ecreeveerreverirninns
- 160

44.1 Des1gn Purpose

442 FEC
443 FEAL Structure
444 FEAL Mapper «w-wo oo

445 Examples of FEAL Apphcatlon e
4.5 Summary Ry et rens

76

. 76
- T
. 81
R e R R T T T T T e 81
282 Study Case L T S

82

- 83

85

.. 89
. 89
- 89
.e 9]
veees 03
- 97

v 97
- 101
v 104
- 111
- 115
- 116

< 117
- 117
- 117
«. 120

- 123
- 123

127

146
160

-+ 161
-+ 163
- 164
- 164
s 166

Contents

References cevrsseresassenens s

Design Strategies in Architecture Level

51 From Reu‘,e to ArChiteCtUIe Design temesesteneassastecesnre s et boansans
52 ArChlteCturalDeSlg] SpaceandRules R T T T R PR
hesses et aes s . 172

£ 173
e 173
- 176
e 177
- 178
- 180

© 180

3 SADPBA cesensans s
531 OVCI'VICW e e seaans ves
5.3.2 Split Design Process with De81gn Space
5.3.3 Trace Mechanism in SADPBA - -
534 Life Cycle Model of Software Architecture «-se-creeerreererensee
5.3.5 SADPBA in Practice ** .
54 Study Case: MEECS --
54.1 Introduction to MEECS

542 ApplymgSADPBAmMEECS

5.5 Summary

REFEIENCES =+ v+ v s v emvserseroresormerareatnrtrstttatsotantocasctsurcnrasnaracts nnnes

Software Archltect“re IDE . M eeeresrseuncanssusnreas
6.1 What Can Software Architecture IDE Do »reeevrerrrrsireresn

6.1.1 A Comparison with Formalized Description Approach -----------

6.1.2 Important Roles of Architecture IDE «+-e-vveeee
6.2 Prototype °* . fetarectreserecrencnane

621 User Interface Layer
622 MOdel Layer s+« v erseerresesssesaenscesntnns ettt st e
. - 199

6.23 Foundational Layer

624 IDE Design Tactics
6.3 ArchStudic 4 System

631 IDtI'OdUCthH teesesesensaursesssas v nns

6.3.2 Installing ArchStudio 4 -

6.3.3 ArchStudio 4 Overview *
634 Using ArchStudio 4 «+rerrereeerrmrerrennnieanninnee
6.4 Summary

References e ene atseacetsats sus e v nus ses aBt AR sse sen TN Rs s aen Aea R0t ces sl ot ore ton s

Evaluating Software Architecture

7.1 What Is Software Archltecture Evaluation — -ererevsrereesemnreeerenee
- 222
- 224

7.1.1 Quality Attribute ----r-ervee
7.1.2 Why Is Evaluation Necessary

‘7]3 SCenarlO’baSedEValuathnMethodS searteserssesrtusa R sna s een e nE

saensres s rastan vbn v “en 228
- 228
v 230

72 SAAM cresseesacncas

7.2.1 General Steps of SAAM

7.2.2 Scenario Development

723 Architecture DeSCription «e+«++=sssessoe s sersersrenerienssniinsns
7.24 Scenario Classification and Prioritization

- 167

- 169

170
171

182

190

-+ 191
- 191

191

- 192
+ 195

196
197

-+ 200
-+ 201
-+ 201
.e 204
- 206
- 214
- 218

220

- 221

222

225

- 730
- 231

w Software Architecture

7.2.5 Individual Evaluation of Indirect Scenarios --:ereeceerecreroeniis 239
72.6 Assessment of Scenario Interaction rescrreersrrreirciaiiisiiiii. 233
7.2.7 Creation of Overall Evaluation «--ec-ceeesrseerrssmsuscriarieeeia. 233
73 ATAM B e s m e e e e e e d ses et BeE PEA e RE RO b L6 U S0 e S eb 08 e see nes ase Bnasee NeR eas ses 234
73.1 Initial ATAM corererreeerettatitetetttiiiiiaiiie i iiietcsnerannsenees 23§
732 ATAM Improvement T T RRECRTTRTPRTI, i Iy
7.3.3 General Process of ATAM crreccerrcimiimiiiaiiiiiianeiaiaiieaeioees 238
734 Presentatlon etats i ve s are teanea tn e ssnsRe Hes teees s aea oo onsnun 241
735 Inveshgatlon and Analy51s 7.)
7.3.6 TeSting «reeerereresreaesnrntrenniient it s 244
7.3.7 Present the Results r=rreeceerrreerraiiiiiiiiiiaiiiiiiiiiiiaiicincacees 245
74 Comparison among Evaluation Methods =»ereceeevrcerrecrinnaenienes 246
742 Overview and Companson of Evaluation Methods +«-+--ev-x-rceer 250
7.5 Summary cseeeeseeess T
References 04 B0 e eV e s eee LU BAE sHG e Ve R B b e T e Bed P NA S NO aBY BN €0b S0 S aanuD tne sew HEE RS 270

8 Flexible Software Architecture B
8.1 What Is Flexibility for ««-eeecererrsrermmmmmummianmcinni 274
8.2 Dynanqjc Software Architecture ---=s-+er-rereesensrsisisrnnreivirenness 276
82.1 =-ADL: A Behavior Perspective X 1.
8.2.2 MARMOL: A Reflection Perspective -=r----rrerrerecrareeranianas 284

8.2.3 LIME: A Coordination Perspective «:+-+:cresereseraiesiinie.n 29]
8.3 F]exibility:chond the Dynamism et e e 200
83.1 Concept of Flexible Software Architecture «+-cereseereseeeeiranenser 209
83.2 Trade-off of Flex1b1hty B T N 101)
84 Study Cases - e 11 &
8.4.1 RalnbOW S s e s ese bt es te e ent teu nus st a e sen masaasana aes eeeseraer . outanenns 303
842 MADAM trorereretttieniitartiet ittt totntiotsarsstsstsvsnsetstsoncscsnss 305
RELEIENCES v+t rsrrrorereeternsn et orinetstetrtatnrircneiecisatsrsenesensessnnes 308

9 A Vision on Software Architecture -«+«»c v ereeveimiiiniieiiiinanan. 313
9.1 Software Architecture in Modern Software lndustry SRR | K
91.1 CategorlzmgSoftware L L T R) &
9.1.2 Software Product Ling -+ -rreveerevermtnerimmniiiiiiiiiiniiiiiiees 318
9.2 Software Architecture Used in Other Fields «+---v-r-screrreverineienenes 325
9.2.1 The Outline of Software Architecture Application Practice -+------- 325
9.2.2 The Development Trends of Domain- Spec:lﬁc Software ++»+r--ee-- 325
9.3 Software Architecture’s Future Research - R R RARE X 11
References S P e M P e N R4 A EE N Pes ST AN e s TP S e8P NS SRS ANY EEE AEE SUS BN LAs tE B AL B0t man e 332

Index I T T T T T 333

Introduction to Software Architecture

Compared to the traditional software several decades ago which were simple
machine instructions or the combination of data structures and algorithms, current
software are more complicated and harder to control and maintain. Normally,
software systems are constructed through the assembly of components, whatever
those which are developed according to new specifications or those which are stored
in the libraries. In this circumstance, a team is needed to face different facets of the
system. Some of them deal with the necessary functions to be implemented or
reused in components, while others have to focus on how the work from different
divisions can be coordinated and communicated correctly. Meanwhile, in this
process some qualities of software must be guaranteed in order to approach the
success.

Software architecture is a rising subject of software engineering to help people
solve problems mentioned above. With it, designers or project managers have the
chance to oversee the status of software in a high level. In addition, software
architecture can be reused, resulting in the saving of huge cost and the reduction of
risks within the development processes and the activities after them, including
designing, modeling, implementation, test, evaluation, maintaining and evolution.

However, tracking software architecture is difficult, because it always hides
itself behind what you can touch. Visualizing it requires a deep grasp of global
information of systems as well as excellent skills and methods. People from
different organizations or enterprises use different strategies to handle it, but most
of them have something in common. Abstract and summary of these experiences
have become the foundation of software architecture science today.

In this chapter, we start from the history of software development, trying to
uncover the origin of software architecture. Then we discuss the definitions and
meanings of architecture and other related activities. At last, we focus on what
benefits we will gain from it.

2 Software Architecture

1.1 A Brief History of Software Development

Revolutions in software development paradigm are not singular since the word
“software” was approximately born in the 1940s when the initial stored-program
computers emerged. Each shift, along with development methodologies, patterns and
tools, occurred to meet new environment and requirements. We believe that software
architecture is the next revolution. Many people have begun to follow this trend,
while, however, many others do not care about it, just as several years ago the
people who were reluctant to change their habits and use new development
technologies. Upon history level, we can get more clear sight of how software
architecture gradually becomes crucial for current software industry and why we
should change cur manner of work to follow it.

1.1.1 The Evolution of Programming Language—Abstract Level

Abstract is the process that simplifies the real systems, activities or other entities
by ignoring or factoring out those trivial details without missing their essential
running mechanisms. To construct a solution with a computer, we abstract it and
implement it with programming language, in which the target model of abstract
greatly affects what programmers see that problem. The progress of programming
languages so far regularly increases their abstract level, transforming the emphases
from machine manipulating to problem solving.

In the 1950s, stored-program computers became popular and thereby
monopolized programmers’ work manner at that time. Programmers used machine
instructions which can be executed directly by their computers and data with naive
categories such as byte, word, double word to express their logic. The layout of
instructions and data in memory had to be controlled by hand, that is, programmers
must keep in mind where the beginning and end positions of each constant and
variable exactly are. When the program needed update, programmers spent a lot of
time to check and modify every reference for data or code position that needs a
movement to keep program’s consistency.

Soon, some people were aware of that these functions could be automated and
reused. Therefore, symbolic substitution and subroutine technology were created.
The great thing about these was that they liberated you from those trivial but
important works for the machine. However, commonly useful patterns, such as
conditional control structure, loop structure, evaluation of numeric computation
expressions, still had to be decomposed to simple control and computation
instructions that machine was able to carry out, which drew programmers’ much
attention to the computation’ s realization rather than the problem itself. This
improved the high-level programming. In the middle of the 1960s, FORTRAN from
IBM became the dominant programming language in scientific computation for its
convenience and high-efficiency.

1 Introduction to Software Architecture 3

In the latter part of 1960s, Ole-Johan Dahl and Kristen Ny gaard created Simula,
a superset programming language of Algol, introducing the object-oriented paradigm.
The data type in FORTRAN serves to construct a map between FORTRAN types
to machine primitive data types. On the contrary, object-oriented paradigm
considers data type as the abstraction of entities from real problems. Although
FORTRAN and C also have the utility such as “structure” and “union”, they are
just the accumulation of data in that data type and operations specific to this type
are separated, and object-oriented rules, including encapsulation, implementation
hiddenness, access control and polymorphism are not touched. With the growth of
C++, a widely accepted object-oriented language, the programming world was
thoroughly changed.

The prime goal of C++or other contemporary object-oriented languages was to
put class as the basic reuse unit. However, the design and realization themselves of
these langnages dcomed to fail. On the one hand, absence of class meta data ruins
the promise of the update capability of a class’ s implementation; on the other hand,
disregard of the separation between the communication contracts among classes and classes’
implementation limits their capability of reuse. We can see that majority of reuse performed
in C++stand on source code level, while reuse in binary level may introduce more
problems than its benefits. You can find more details about this subject in (Joyner,
1996). When people find that software can be assembled by several independent
parts and thus can reduce the cost and time in building larger system, it is clear that
finding a proper reuse unit or establishing principles for this kind of unit is crucial.
(Ning, 1996) gave the first complete picture of component-based software
development model.

Component further raises the design level by increasing the concept size of
building block in software. The great thing about this is that it permits designers to
construct a system by using interindependent components, under the premise of
that strict communication contracts are defined and followed. Object-oriented
paradigm is a good basis for component development model, but not each
component must be implemented by objects. After the middle of the 1990s, COM
and CORBA became popular because they extended C++or other languages to meet
component model’ s requirements and principles. Java and Net platform support
development and deployment in component level since their birth, with the help of
explicit utility of interface and meta information. What’ s more, the design modetl
created by UML can be easily converted to the source code in these two platforms.
UML combines concepts, advice and experience of countless designers, software
engineers, methodologists and domain experts to provide a suit of fundamental
notations, with which people care only components and the relationships, constraints
among them. In other words, UML achieves the peak of abstract level so far.

We believe software architecture will bring next shift in software development
paradigm. But just as the relation between high-level programming languages and
UML, software architecture will not exterminate old methods and tools, but to
complement them to deal with large-scale, rapid-changing software intensive

