Numerical Analysis
In Engineering

Revised Edition

R.B. Bhat
. CGhakraverty

“Numerical Analysis
In Engineering

Revised Edition

Rama B. Bhat
Snehashish Chakraverty

B
@ E2009003716

Alpha Science International Litd.
Oxford, U.K.

Rama B. Bhat

Department of Mechanical Engineering
Faculty of Engineering and Computer Science
Concordia University, Montreal

Quebec, Canada

Snehashish Chakraverty
Computer Centre

Central Building Research Institute
Roorkee, India

Copyright © 2004
Revised Edition 2007

Alpha Science International Ltd.

7200 The Quorum, Oxford Business Park North
Garsington Road, Oxford 0X4 2JZ, U K.

www.alphasci.com

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without prior written permission of the publisher.

ISBN 978-1-84265-402-6

Printed in India

Numerical Analysis
in Engineering

Revised Edition

Preface

Numerical Methods as a subject has not changed very much over the years.
The book is not much different from other books available at present in the
market. However, our approach in the presentation of the material is simple,
providing numerous examples. This will serve as a very good textbook for
any undergraduate course on numerical methods. The first nine chapters of
this book originally evolved out of the course notes prepared by the first
author over a period of several years in Concordia University, starting from
1980 to 1987. Chapter 10 on Partial Differential Equations was added by a
colleague, Dr. Gerard Gouw, who also helped in putting the notes together in
word processor. The two of us published this version as Course Notes at that
time, which was published by Simon and Schuster Custom Publishing, and
this has been used in Concordia University for several years.

The second author, Dr. S. Chakraverty, visited Concordia University in
1999 as a Research Associate, and proposed to add some material on the
Boundary Characteristic Orthogonal Polynomials and Solution of Boundary
Value Problems. The original course notes were extensively revised by both
the authors, and the present book evolved.

Undergraduate programs in engineering have several courses that can
benefit from a knowledge of the numerical analysis techniques such as circuit
analysis, electricity, fluid mechanics, heat transfer, structural analysis, network
analysis, mechanical vibrations. Example problems illustrating the methods
in many of these areas are provided and discussed.

We acknowledge the helpful comments from our colleagues as well as the
students. Thanks are particularly due to Mr. Xiangyu Xie who helped in
preparing the manuscript in the final form.

Rama B. BHaAT
SNEHASHISH CHAKRAVERTY

Table of Contents

Preface

Chapter 1 : Solution of Equations for Engineering Design
and Analysis

Chapter 2 :

Chapter 3 :

1.1
1.2
1.3
1.4

1.5
1.6
1.7

Introduction

Taylor’s Series Expansion of Functions
Digital Computers

Number Representation: Floating Point and
Fixed Point

Algorithms and Flowcharts

Error Considerations

Sequences

Numerical Search for Roots of Algebraic
and Transcendental Equations

2.1
2.2
23
24
2.5
2.6
2.7
2.8

Incremental Search

Bisection Method

Method of False Position

Newton Raphson Method
Modified Newton Raphson Method
Secant Method

Complex Roots of Equations
Practical Application

Methods to Solve Linear Simultaneous Equations

3.1
3.2
33
34
3.5

Properties of Matrices

Gaussian Elimination

Pivoting Techniques
Gauss-Jordan Method

Matrix Factorization Techniques

3.5.1 Doolittle Method (L*U decomposition) 54
3.5.2 Crout’s Method 57

15
18
20
23
26
28
30
31

34

34
37
42
49
53

viii Contents

Chapter 4 :

Chapter 5:

Chapter 6 :

Chapter 7 :

Chapter 8 :

3.6 Cholesky Method (valid only for matrices which are

positive definite)
3.7 Norms of Vectors and Matrices
3.8 Jacobi Method
3.9 Gauss-Seidel Method

Function Approximation or Interpolation

4.1 Discrete Least Squares Approximation
4.2 Least Squares Function Approximation
4.3 Interpolation with Divided Differences
4.4 Lagrange Polynomials

4.5 Cubic Spline Approximation

Numerical Integration

5.1 Introduction

5.2 Trapezoidal Rule

5.3 Simpson’s Rule

5.4 Newton-Cotes Formulas
5.5 Romberg Integration
5.6 Gauss Quadrature

Numerical Differentiation

6.1 Central Differences
6.2 Forward Differences
6.3 Backward Differences
6.4 Error Considerations

Matrix Eigenvalue Problems

7.1 Gerschgorin Circle Theorem

7.2 Characteristic Equation

7.3 Power Method

7.4 Inverse Power Method

7.5 Jacobi’s Method

7.6 Householder — Q, L Method

7.7 Householder — Q, R, Method

Solution of Equations for Engineering Design
and Analysis

8.1 Introduction
8.2 Newton’s Method

62
69
74
76

78

78
86
90
98
101

115

115
118
125
128
132
139

149

149
156
163
172

174

174
178
182
187
195
204
215

223

223
223

Chapter 9 :

Chapter 10:

Chapter 11:

Chapter 12:

Problems
References
Index

Contents ix

Numerical Solutions of Ordinary Differential
Equations

9.1 Introduction

9.2 Euler’s Method

9.3 Higher Order Taylor Methods

9.4 Runge-Kutta Methods

9.5 Two Step Predictor-Corrector Methods

9.6 Milne’s Predictor-Simpson’s Corrector Method

9.7 Hamming’s Method

9.8 Higher Order Differential Equations and System
of Differential Equations

Introduction to Partial Differential Equations

10.1 Introduction

10.2 Elliptic Partial Differential Equations
10.3 Parabolic Partial Differential Equations
10.4 Hyperbolic Partial Differential Equations

Introduction to the Theory of Linear Vector Spaces

11.1 Preliminaries
11.2 Construction of Orthogonal Polynomials
11.3 Boundary Characteristic Orthogonal Polynomials

Solution of Boundary Value Problems

12.1 Preliminaries

12.2 Shooting Method
12.3 Rayleigh-Ritz Method
12.4 Collocation Method
12.5 Galerkin’s Method

233

233
234
237
239
243
245
248

249
254

254
255
257
261

263

263
270
274

276

276
276
283
287
289

293
318

319

CHAPTER 1

Solution of Equations for Engineering
Design and Analysis

1.1 Introduction

In order to implement any physical systems that engineers conceive in their
minds, they should verify whether such physical systems would do their intended
operations satisfactorily in the operating environments. This is normally done
by developing a mathematical model for the physical system, subjecting them
to external loads that they would be subjected to during their operation and
ensuring the systems would be stable and perform their intended tasks in the
operating environments. The conditions of stable operation under operating
environments may be expressed in the form of system of simple equations,
system of differential equations or system of integral equations. When it is
difficult, cumbersome or sometimes impossible to solve these equations in
closed form engineers resort to numerical techniques to solve them.

With the advent of electronic computers, the numerical solutions to
engineering problems cast in the form of mathematical equations have become
simpler. The accuracy of such numerical solutions also can be improved by
systematic applications of the numerical techniques or algorithm, in an iterative
form.

1.2 Taylor’s Series Expansion of Functions

For satisfactory operation under operating environments, physical systems
satisfy equilibrium conditions, which can be expressed in the form of simple
equations, differential equations or integral equations. In any of these forms, a
function can be expressed in its neighborhood, if we know the function value
and their higher derivatives at a given point, using Taylor’s series expression
about the point.

The Taylor’s series is the foundation of numerical methods. Many of the
numerical techniques are derived directly from these series.

2 B Numerical Analysis in Engineering

Taylor’s series obtains the function in the form of a polynomial in the
neighborhood of the known point. The expansion is given by
(x - a)?

Fx)=fla) + (x-a)f' (@) + 57— f"(a) + ...

+ (";—fw(a) +... (L]

a)”
!

If the estimation of the function at a point b which is fairly close to a is
desired, it is given by

L
f®) =f@ + b -a) f(@)+ ESB prigy 4

+ (b;ﬁ!a)”f(”)(a) +... (12

These are infinite series. In practical applications the series can be terminated
after a few terms, depending on the distance of point b froma. If b is very close
to a, only a few terms will give a good estimation.

The error in Taylor’s series for S (x) when the series is terminated after the
term containing (x — a)" is not greater than

1
If(n+1)l (lx_al)(n+)
max -

(n+1)! (1.3)

where max denotes the maximum magnitude of the derivative in the interval a
to x. However, £+ itself is not known if the function f (x) is not known. This
frustrating state of affairs is common in numerical analysis. If the expansion is
used to obtain the estimate of the function for very small values of (x — a), then
the error also comes down. If the series is truncated after n terms, we can say
that f (x) is accurate to O(x — a)'.

Exampel 1.2.1
Determine (a) sinh (0.9) and (b) cosh (0.9) to 0(0.9)*.

Solution
X -X X —-X
sinh (x) = e—Te; cosh (x)=¢ ;e ;
sinh (0) =0 cosh (0) =1
sinh” (0) =1 cosh’” (0)=0
sinh”(0) =0 cosh” (0) =1
sin” (0) = 1 cos” (0)=0

(a) sinh (0.9) = sinh (0) + 0.9sinh’ (0) + 2

2 3
5 sinh”(0) + 22~ sinh(0)

3
=0+o.9+0+°-6—9,=1.0215

(exact: 1.0265....)

Solution of Equations for Engineering Design and Analysis B 3

(b) cosh (0.9) = cosh (0) + 0.9 cosh’ (0) + = 0.9% 9 cosh”(0) + cosh ”(0)

=14 092 _

= 5 = 1.405

(exact: 1.4331....)
Example 1.2.2
Consider one more non-zero term in the above expansions.
Solution
(a) sinh (0.9) = 0+09+0+°g +0+°59, = 1.0264

(exact: 1.0265....)
(b) cosh (0.9)= 1+ 22 +0+ 297 - 14320

(exact: 1.4331...)
Example 1.2.3
Given f (1.8) = — 1.1664 and f’(1.8) = 3.888. Find out x when f (x) =
Solution

fx) =f(a)(x-a)
0=-1.1664 + 3.888(x — 1.8)

Hence, =18+ 11664 _5

3.888

(The example is based on the function f (x) = x* — 2x3, which has a root at x =
2)

Example 1.2.4
Given the differential equation % = 2x with f(1) = 1 obtain £ (1.2).
Solution

fEO=fM)+fMx=1) =f(1) +2(x~ 1) + 2(x - 2!
fA2)=1+2(12-1)+2(12-1)%2 =144

1.3 Digital Computers

There exist basically two types of computers: (1) digital and (2) analog. The
analog computer generates a continuous output signal when it is given a
continuous input signal. This type of computer is popular in control systems;
however, it has little value when number crunching is the main concern as in
numerical methods. The digital computer deals with numbers in the form of

4 B Numerical Analysis in Engineering

finite number of digits. A sequence of simple binary operations, such as on or
off, assigned with digits 1 and 0, respectively, can represent numbers to any
number of digits of accuracy. The digital computer, like the calculator, can
perform arithmetic operations; however, unlike a normal non-programmable
calculator, it can perform several operations using data from previous operations
if necessary, without help from the user. In other words, the digital computer
has the ability to make decisions based on how it is programmed, e.g. if the
computer is instructed by the program to compare two numbers A and B, then
depending on whether A is less than, greater than, or equal to B, the computer
will take one of three entirely different paths for subsequent operations. The
computer also has the ability to store previous calculations for future use if
they are needed.

The most important characteristic of the digital computer is its high speed.
By employing simple routines, calculations that previously took days and weeks,
can now be performed in seconds or minutes.

The major contribution which has revolutionized the use of computers is
the development of a memory unit. The memory unit is capable of storing a
few hundred to several thousand numbers. Commands can also be stored in the
unit in a similar fashion.

A computer system consists of five major components: (1) input device, (2)
a memory unit, (3) a control unit, (4) an arithmetic logic unit, and (5) output
devices. These five components are either combined into one unit or operate as
individual units (see Fig. 1.3.1).

Computer operating system

s g g e
i}

Memory

L.

]npu[Control |

I

Arithmetic
Logic Unit

Output |

Figure 1.3.1

The input unit serves as a device to feed data and commands into the memory
unit. This is achieved by components such as keyboards, punch cards, magnetic
disk, or magnetic tape. Magnetic disk is the fastest of the above mentioned.

The memory unit, control unit, and arithmetic logic unit are referred to as
the Central Processing Unit or C.P.U. This is the unit which will, through the
use of a compiler program, open and close various electronic switches or gates,
allowing data to pass from one part of the machine to another. The C.P.U. is
also responsible for making logical decisions and performing arithmetic
operations.

Solution of Equations for Engineering Design and Analysis B 5

The output devices, such as printers, plotters, magnetic disks, video screens,
or magnetic tape units, serve to display the computed data outside the machine.

The units described so far are known as hardware. Hardware are the actual
physical components of the computer, whereas software are the programs or
instructions fed to the computer. Notice that software has no physical substance,
it is just a set of instructions. This course will deal only with software.

1.4 Number Representation: Floating Point and
Fixed Point

When doing calculations on paper, the decimal point can be kept track of quite
easily after each calculation. However, when using a computer, where several
operations are performed internally before a final result is displayed, there are
two techniques in which the decimal point is taken care of.

The first method is the fixed-point method which is seldom used. This is
due to the inconvenience of the user having to keep track of decimal places in
the input and output. The second and much more accepted method employed
in the computer hardware is the floating point method.

In this method the computer represents a number in the following form.

Number = S x M x B¥

S =sign (+or-)

M = mantissa, a value which lies between 0.1 and 1

B =Dbase (B =.10 for decimal computers; B = 2 for binary computers)

k = exponent

To illustrate the above formula it is convenient to consider a simple example.

Example 1.4.1
Consider a familiar number such as Young’s modulus:

E = 30,000,000 psi, N = +0.3 x 10® psi

Notice that the mantissa is always between 0.1 and 1. Also notice that this
would be a decimal computer since the number is represented with base 10.

If an operation is carried out between two numbers in this form, zeros might
appear before or after the decimal point. This is taken care of by the computer
by normalizing the result.

Example 1.4.2
0.5789875 x 107

—0.5778764 x 107
0.0011111 x 107

Normalizing this for the next operation would be to put it into the form:

0.11111 x 10°

6 B Numerical Analysis in Engineering

So far the way in which a number is handled by the decimal based computer
has been shown. For simplicity assume that we have a decimal computer with
a storage space available for 10 digits plus a sign. In such a case the number:

N =-31.579643 would be represented by
N =-0.31579643 x 10* which would be stored as

—-[3|1|5[7]|9]6]|4(3|0]|2

/ | N\

sign ' mantissa ’ exponent

8 spaces

The computer handles a negative exponent by adding 50 to it.
N =0.31579643 x 10~ this would be stored as

+[3]1(5]|7(9]|6(4]|3]|4]6

The computer knows that 46 represents an exponent of — 4,

At this point it must be noted that the available amount of storage space is
8 and therefore the precision of the machine is also 8. Suppose the mantissa
has 12 digits and the computer precision is only 8 as above, or two numbers
with 8 digits are multiplied producing a number 15 digit long. Some questions
that would arise are how accurate are the results after 100 such multiplications
and how does the computer store the result in its limited memory space.

The machine precision dictates the amount of accuracy of the result.

1.5 Algorithms and Flowcharts

An algorithm is a set of step-by-step logical instructions that are to be followed
to reach a goal efficiently. Some examples of an algorithm would be a recipe
for cooking a dish or instructions for building a house.

An algorithm is the step-by-step thought process that is used to solve a
problem. Algorithms should possess the following qualities:

(1) They should be precise: This means that if an iterative process is being
performed that permits a relative error of 0.001, the operation should
continue until this condition is satisfied, and not go farther.

(2) They should be finite: The process should terminate after a finite number
of steps.

(3) They should be effective: This means that the problem should be solved
efficiently. For instance computer time is expensive when running a
large problem. If the program is well structured it will be effective.

Algorithms consist of three major parts, some input, a process, and resulting
output. A flowchart is a pictorial representation of an algorithm. For example
the flowchart representing the algorithm to machine a component is shown
below:

Solution of Equations for Engineering Design and Analysis B 7

e Lo weagg

Start

T — J, s v

Input
Component to be machined
Operations, tolerances

Process
Turning, milling, etc.

J— JA T ———

Output
Machined Component ;

L

Stop

T

Figure 1.5.1

A logical approach to solving a typical engineering problem in real life is
outlined below:

Step 1
Step 2

Step 3

Step 4

Step 5

Formulate a mathematical model for the given problem. From this
model certain mathematical equations can be developed.

Select a numerical method suitable for solving the mathematical
equations. An algorithm should be developed at this stage.

Draw a detailed flowchart. Each block of the flowchart should
represent a major section of the program. Make the flow chart as
detailed as possible.

Write the codes, which is another name for computer program, in a
suitable computer language. Each block of the flowchart should be
represented by its own section of code. Often subroutines are
employed to show the interdependence between two blocks of the
flowchart. Subroutines or subprograms are an intricate part of
structured programming.

Run the program on the digital computer. The first time the program
is run, it is bound to have errors, whether it be in the actual logic, or
just typing errors (referred to as syntax errors). The process of
recognizing and correcting these errors is called debugging. If the
program is well structured, with appropriate subroutines used
throughout the program, it is usually easy to locate the error in the
program. Use of subroutines makes it much easier for someone other
than the programmer to understand the program. Subroutines can

8 B Numerical Analysis in Engineering

also be called at any point in the program so that calculations of the
same type can be performed without writing new codes.

Once the general location of the error is found, print statements
can be used to indicate what the program is doing incorrectly. This
type of procedure is called tracing.

Step 6 After the program is completely debugged, make the final run.

1.6 Error Considerations

There is an inherent form of error in calculators or digital computers because
they perform mathematical operations with only a finite number of digits.
Whenever such approximation is involved, we would like to know what the
extent of approximation is. The difference between the exact value and the
approximate value obtained in its place is the error. A typical number
representation system in computers is in the normalized decimal form.

id]dzd:; e dk x 10"
1<d, <9, 0<4d,<9
The fractional part +d,dyd; . . . d; is called the mantissa and the exponential
part s called the characteristic. Different types of computers can handle different

values of k and n.
Assume the actual number is of the form

y =idld2d3 cee dk dk+1 dk+2 ...x10"

If a given computer can retain the mantissa part up to k decimal places only,
it will have to discard the values in decimal places d;,; and above. If the
quantities dy,; and above are just dropped off, it is referred to as “chopping”. If
dp41 1 5 or larger than 5, then it is more meaningful to add a unit value to d, and
then drop off di,, and above. This latter procedure is called rounding-off. If
dy4 is less than 5, then both chopping and rounding procedures will give the
same result.

Example 1.6.1
Round off y = 1/3 to 6 decimal places in the normalized decimal form.
y=1/3=0.3333333 x 10°
Since d; < 5 we just drop off d; and above. The result is:
y =0.333333 x 10°
Example 1.7.2
Round off y = 2/3 to 6 decimal places in the normalized decimal form.
y =2/3 =0.6666666 . . . x 10°

Solution of Equations for Engineering Design and Analysis B 9

Since d; > 5, we add 1 to dg and the result is:

y = 0.666667 x 10°

Absolute and Relative Errors
If p is the exact value required and by following a numerical solution method,
we obtain an approximation p* to p, then

Absolute error, &, =| p — p* |

_ p¥*
and Relative error, &, = L.I.’._.L’._l.
|pl
Provided p #0

Example 1.6.3
What are the absolute and relative errors involved if y = 2/3 is represented in
normalized decimal form with 6 digits.

(i) by chopping (also called truncation)
(ii) by rounding off

Solution
(i) y = 2/3= 0.666666 x 10°
Absolute error, &, = 2/3 — 0.666666 x 10°
= (0.6666666* —0.666666) x 10°
=0.000000666 . . . x 10°
=0.666... x 107°

. (0.6666666666 . . . — 0.666666) x 10°
Relative error, &, =
0.66666666 . .. x 10°

_ 0.666666666 . ..x 10° _ -6
= =1x10
0.666666666 . .. x 10°

(ii) y =2/3 =0.666667 x 10°
Absolute error, &, = | (0.6666666 . . . -0.666667) x 10° |
=0.00000033 . ..x 10°=0.33 x 10”7

. [(0.6666666 . . . — 0.6666667) x 10°|
Relative error, &, =
| 0.66666666 . . . x 107]

_0.3333333... % 106 _13x 10-¢
0.6666666 . ..x 10° 2/3 x 10°

=0.5%x10%=5x%x10"

