LIQUID-VAPOR PHASE-CHANGE PHENOMENA

An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment

LIQUID-VAPOR PHASE-CHANGE **PHENOMENA**

> An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment

Van P. Carey

Mechanical Engineering Department University of California at Berkeley

LIQUID-VAPOR PHASE-CHANGE PHENOMENA: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment

Copyright © 1992 by Hemisphere Publishing corporation. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher.

4567890 EBEB 9876

This book was set in Times Roman by Edwards Brothers, Inc. The editors were Heather Jefferson and Lynne Lackenbach; and the production supervisor was Peggy M. Rote. Cover design by Kathleen Ernst.

Printing and binding by Edwards Brothers, Inc.

A CIP catalog record for this book is available from the British Library.

® The paper in this publication meets the requirements of the ANSI Standard Z39.48-1984 (Permanence of Paper)

Library of Congress Cataloging-in-Publication Data

Carey, V. P. (Van P.)

Liquid-vapor phase-change phenomena: an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment / Van P. Carey.

- p. cm.—(Series in chemical and mechanical engineering) Includes bibliographical references and index.
- 1. Heat exchangers. 2. Change of state (Physics) 3. Evaporation.
- 4. Condensation. I. Title. II. Series.

TJ263.C37 1992

621.402'5-dc20

91-25418

CIP

ISBN 0-89116-836-2 (case) ISBN 1-56032-074-5 (paper)

LIQUID-VAPOR PHASE-CHANGE PHENOMENA

Series in Chemical and Mechanical Engineering

G. F. Hewitt and C. L. Tien, Editors

Carey, Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment

FORTHCOMING TITLES

Banerjee, Chemical Plant Safety Kemp, Pinch Technology and Process Integration

To my daughter, Elizabeth Megan, and my son, Sean Wesley, whose curiosity is a constant reminder that eagerness to explore and the desire to understand are essential elements of the human spirit.				
to understand are	essential elements of the human s	spirit.		
to understand are	essential elements of the human s	spirit.		
to understand are	essential elements of the human s	spirit.		

PREFACE

This text was inspired by the need for instructional material for a graduate-level course on heat transfer with phase change taught on a yearly basis in mechanical engineering at the University of California at Berkeley. Several books published over the last 20 years have summarized the state-of-the-art in boiling and/or condensation phenomena. However, these texts invariably were less than ideal for instructional purposes because they focused almost entirely on the heat transfer and fluid mechanics aspects of boiling and condensation. They generally provided little, if any, treatment of the nonequilibrium thermodynamics and interfacial phenomena that frequently play central roles in such processes. In assembling this text, the goal was to provide a coherent presentation of the nonequilibrium thermodynamics and interfacial phenomena associated with vaporization and condensation processes, as well as the heat transfer and fluid flow mechanisms.

This book focuses on basic elements of condensation and vaporization processes. Those who work in the field know that the number of technical reports, papers, and books dealing with boiling and condensation processes is enormous. Coverage of all the work in these areas is clearly impossible within the limited space in a basic text. In the interest of conciseness, the tone of the presentation in this book is therefore illustrative rather than exhaustive. In most cases, the basic physical mechanisms associated with a particular phase-change phenomenon are described in detail, followed by a representative sample of the best models applicable to the circumstances of interest. Throughout the text, the importance of the basic phenomena to a wide variety of applications is discussed. However, space limitations precluded extensive discussion of special features that arise in some applications.

The sequence of material in this book was chosen to facilitate instruction at the

advanced undergraduate or graduate level in mechanical or chemical engineering. The chapters in Part 1 of the book deal entirely with nonequilibrium thermodynamics and interfacial phenomena. If covered first, this material provides a useful foundation on which the later discussions of boiling and condensation phenomena can build. Part 2 covers boiling and condensation processes on the external surfaces of a body exposed to an extensive ambient. The material on internal flow boiling and condensation in Part 3 follows that in Part 2 because many of the concepts that apply to external condensation and boiling apply in a modified form to convective boiling or condensation in tubes.

Part 4 is a chapter that covers some additional special topics and applications. This material can be presented most efficiently after an understanding of the basic physics is attained from study of preceding chapters. A special effort has been made to incorporate material on the enhancement of boiling and condensation heat transfer, because engineers involved with such processes most often want to enhance the transport. The progressive flow of ideas provided by the book's structure should also make it useful to practicing engineers who wish to gain a further understanding of the thermophysics of vaporization and condensation processes through individual study.

As noted at the outset, this text evolved from material used to teach a graduate-level class in phase-change heat transfer at Berkeley. The author is indebted to the numerous students in that class who questioned and criticized the class notes that preceded this text. The author is also grateful to Professor John H. Lienhard, Professor Dennis O'Neal, and Professor Ralph Seban for their insightful comments on the early manuscript version of this text. An expression of appreciation is also due to the many investigators who have contributed to this area over the past 50 years. It is only through their combined efforts that a clear overview of this area is possible. Finally, the author wishes to express his thanks for the understanding and patience of his family during the many hours of work required to assemble the material in this text.

Van P. Carey Berkeley, California

NOMENCLATURE

```
A_p
            prime surface area
b
            fin height
            Bond number [=g(\rho_1 - \rho v)L_B^2/\sigma (where the length scale L_B depends on
Bo
            the circumstances of interest)]
            boiling number (=q''/Gh_h)
            liquid specific heat
c_{pl}
            vapor specific heat
C_{pv}
            convection number \{ = [(1 - x)/x]^{0.8} [\rho_{11}/\rho_{11}]^{0.5} \}
Co
d_d
            bubble departure diameter
            tube diameter
d
d_h
            hydraulic diameter based on wetted perimeter
d_{hp}
            hydraulic diameter based on heated perimeter
(dP/dz)_{fr}
            frictional component of two-phase pressure gradient
(dP/dz)_i
            pressure gradient for liquid flow alone through tube
(dP/dz)_{lo}
            pressure gradient for entire flow as liquid through tube
(dP/dz)_{ij}
            pressure gradient for vapor flow alone through tube
D
            tube diameter
D_{C}^{*}
            binary diffusion coefficient for more volatile component
D_{AR}
            binary diffusion coefficient for species A and B
\boldsymbol{E}
            mass fraction of liquid phase entrained in the core during annular flow
E''
            rate of entrainment in mass of droplets per unit time per unit of wall area
E_{\rm kin}
            system kinetic energy
E_{
m pot}
            system potential energy
            bubble frequency
            friction factor
```

surface or cross-sectional area

fin area

tube open area

 $\frac{A}{A_f}$

 A_{o}

xiv NOMENCLATURE

```
friction factor for liquid flowing alone in tube
f_{l}
            friction factor for vapor flowing alone in tube
f_{v}
F
            Helmholtz function (=U - TS)
            force
            Chen correlation parameter
            Taitel-Dukler flow regime parameter
F_{\scriptscriptstyle 	ext{TD}}
            Froude number [=G^2/(\rho_l^2gD)]
Fr_{lo}
            gravitational acceleration
g
            specific Gibbs function
G
            Gibbs function (=H - TS)
            mass flux through tube or channel
            local heat transfer coefficient
h
h
            mean heat transfer coefficient
ĥ
            specific enthalpy on per unit mass basis
h*
            mass transfer coefficient
            heat transfer coefficient for the liquid phase flowing alone in the tube
h,
h_{le}
            heat transfer coefficient for entire flow as liquid
            heat transfer coefficient for entire flow as liquid
h_{lo}
h_{lv}
            latent heat of vaporization per unit mass
H_f
            fin height
            volume flux of liquid [=G(1 - x)/\rho_l]
J_I
j_v
            volume flux of vapor [Gx/\rho_v]
            flux of droplet or bubble embryos through size space
J*
            dimensionless droplet flux in size space
Ja
            Jakob number [=c_p \Delta T/h_{lv}] (where the choices of c_p and \Delta T depend on the
            circumstances of interest)]
            Boltzmann constant (= 1.3805 \times 10^{-23} \text{ J/K})
k_R
            deposition coefficient in model of entrainment and deposition for annular
k_d
            flow
k_i
            thermal conductivity of liquid
k_{\cdot \cdot}
            thermal conductivity of vapor
K_{TD}
            Taitel-Dukler flow regime parameter
L
            bubble or capillary length scale \{ = [\sigma/g(\rho_l - \rho_u)]^{1/2} \}
L_{h}
            fin length
L_f
            mass of one molecule
m
            mass flow rate of condensate in liquid film per unit width of surface
m'
m"
            mass flux
M
            mass
\overline{M}
            molecular weight
            Avogadro's number (= 6.02 \times 10^{26} molecules/kg mol)
N_A
N_{i}
            number of liquid molecules per unit volume
N_n
            number of embryos of n molecules at equilibrium per unit volume
P
            pressure
P_c
            critical pressure
P_{I}
            ambient liquid pressure
P_{ni}(T)
```

saturation pressure of pure component i in mixture at temperature T

```
P_v
            ambient vapor pressure
            liquid Prandtl number
Pr,
            turbulent Prandtl number (=\epsilon_M/\epsilon_H)
Pr,
Pr_v
            vapor Prandtl number
q''
            heat flux
q_{
m cr}^{\,\prime\prime}
            critical heat flux
            minimum heat flux on pool boiling curve
q_{\min}''
            maximum heat flux limit dictated by kinetic theory for condensation
q_{
m mkc}^{\,\prime\prime}
            maximum heat flux limit dictated by kinetic theory for vaporization
q_{mkv}''
            total heat transfer rate
q
Q^*
            dimensionless heat flux \{ = [4q''L/d_h(G/\rho_{in})h_{ln}][(\rho_l - \rho_v)/\rho_v\rho_l] \}
R
            ideal gas constant on a per unit mass basis
            liquid jet radius
Ŕ
            universal gas constant (= 8.3144 kJ/(kg mol K)
Re
            Reynolds number
Re_F
            film Reynolds number
            Reynolds number for liquid phase flowing alone [=G(1-x)d_b/\mu_I]
Re,
            Reynolds number for entire flow as liquid (=Gd_h/\mu_l)
Re
            Reynolds number for entire flow as liquid (=Gd_h/\mu_l)
Relo
            film Reynolds number (=4\dot{m}'/\mu_l)
Re,
            Reynolds number for vapor phase flowing alone (=Gxd_h/\mu_n)
Re,
            specific entropy
S
            distance between fins in an offset fin matrix
S
            supersaturation ratio [=(P_v)_{SSL}/P_{sat}(T_v)]
            suppression factor in Chen correlation
            slip ratio (=u_{1}/u_{1})
            Schmidt number (= \nu/D_{AB})
Sc
            spreading coefficient [ = -(\partial F/\partial A_s I)]
Spl_s
            Stanton number (=h/Gc_n)
St
            subcooling number \{ = [c_{pl}(T_{\text{sat}} - T_{\text{in}})/h_{lv}][(\rho_l - \rho_v)/\rho_v] \}
Su
T
            temperature
T_c
            critical temperature
T_i
            interface temperature
T_{\rm in}
            fluid temperature at tube inlet
T_{\rm sat}
            saturation temperature
            Taitel-Dukler flow regime parameter
T_{\mathrm{TD}}
            wall temperature
T_{w}
            specific internal energy
и
            velocity component in the x direction
            liquid mean downstream velocity in two-phase flow
u_{l}
            [=G(1-x)/\rho_l(1-\alpha)]
            vapor mean downstream velocity in two-phase flow (=Gx/\rho_{\parallel}\alpha)
u_{\nu}
U
            internal energy
UA
            overall conductance of a heat transfer device (=\dot{q} divided by the driving
            temperature difference)
            specific volume
υ
```

xvi NOMENCLATURE

	1 - 2 2- d P 2-
	velocity component in the y direction
v_c	critical volume
V	volume
2.2	velocity
<i>w</i> -	velocity component in the z direction
\bar{w}	mean distance between fins
W	mass flow rate
X	coordinate (downstream coordinate for external flows)
Mey /	mass quality
X_a	actual ratio of vapor mass flow rate to total mass flow rate
$\mathcal{X}_{\mathrm{crit}}$	dryout quality
x_e	equilibrium quality
X	Martinelli parameter $\{ = [(dP/dz)_l/(dP/dz)_v]^{1/2} \}$
X_l	mole fraction of more volatile component in liquid phase
X_{li}	mole fraction of component <i>i</i> in liquid phase
v	mole fraction of more volatile component at the liquid-vapor interface
X_{tt}	Martinelli parameter for turbulent-turbulent flow
X_v	mole fraction of more volatile component in vapor phase
X_{vi}	mole fraction of more volatile component in vapor phase at the liquid- vapor interface
y	coordinate, surface normal coordinate for external flows
	twisted-tape insert ratio of length for 180° twist to tube inside diameter
y^+	dimensionless y coordinate $(=y\sqrt{\tau_0/\rho_l}/\nu_l)$
z	coordinate (downstream coordinate for tube flows)
α	wave number
	void fraction
α_c	critical wave number
α_T	thermal diffusivity $(=k/\rho c_p)$
α_{Tl}	thermal diffusivity of liquid
α_{Tv}	thermal diffusivity of vapor
β	frequency
$oldsymbol{eta}_f$	volume fraction of liquid flowing in liquid film on tube wall
$oldsymbol{eta_{max}}$	frequency of most rapidly growing disturbance
γ	multiplier in Baroczy correlation
δ	film thickness
δ^+	dimensionless film thickness $(=\delta\sqrt{\tau_0/\rho_l}/\nu_l)$
δ_f	fin thickness
$\boldsymbol{\delta}_t$	thermal boundary-layer thickness
ΔT_{vl}	temperature difference across liquid-vapor interface
ϵ	emissivity
ϵ_H	eddy diffusivity of heat for turbulent flow
ϵ_M	eddy diffusivity of momentum for turbulent flow
η_f	fin efficiency
θ	liquid contact angle
w2	angular coordinate
λ_c	critical wavelength
λ_D	most dangerous wavelength

```
absolute viscosity
μ
              chemical potential
              liquid viscosity
\mu_I
              liquid chemical potential
              vapor viscosity
\mu_v
              vapor chemical potential
              liquid kinematic viscosity
\nu_I
              vapor kinematic viscosity
\nu_{,,}
              liquid density
\rho_l
              vapor density
\rho_{\nu}
              interfacial tension
\hat{\sigma}
              accommodation coefficient
              Stefan-Boltzmann constant (= 5.67 \times 10^{-8} \text{ W/m}^2 \text{ K}^4)
\sigma_{\rm SB}
              shear stress
              shear stress at interface
\tau_i
              shear stress at wall
\tau_0
\tau_w
              shear stress at wall
              two-phase multiplier \{ = [(dP/dz)_{fr}/(dP/dz)_{l}]^{1/2} \}
\phi_{i}
              two-phase multiplier \{ = [(dP/dz)_{fr}/(dP/dz)_{ij}]^{1/2} \}
\phi_{lo}
              two-phase multiplier \{ = [(dP/dz)_{fr}/(dP/dz)_{ij}]^{1/2} \}
\phi_{n}
\Omega
              vorticity
              angle between tube axis and horizontal
```

Subscripts

a b

bp

actual value

bubble point

bulk

```
properties evaluated at the critical point
C
dp
           dew point
           exit conditions
ex
f
           film
           fin
i
           interface
           inlet conditions
in
l
           liquid
           corresponding to the liquid phase flowing alone
le
           corresponding to the entire flow as liquid
           corresponding to liquid flow in equivalent separate cylinder
lo
           corresponding to the entire flow as liquid
sat
           corresponding to saturation conditions
           supersaturation limit
SSL
           vapor
υ
           corresponding to the vapor phase flowing alone
           corresponding to vapor flow in equivalent separate cylinder
ve
w
           wall value
           far ambient conditions
\infty
           wall value
```

CONTENTS

	Preface Nomenclature	xi xiii
PART 1	THERMODYNAMIC AND MECHANICAL ASPECTS OF INTERFACIAL PHENOMENA AND PHASE TRANSITIONS	
1	INTRODUCTORY CONCEPTS	1
1.1	Introduction	1
1.2	Review of Fundamental Thermodynamic Principles	3
	Conditions for Equilibrium	5
1.4	Properties at Equilibrium	8
1.5	Review of Fundamental Transport Phenomena	11
1.6	A Molecular Perspective on Liquid-Vapor Transitions	16
	References	22
	Problems	23
2	INTERFACIAL TENSION	25
2.1	The Interfacial Region	25
	Thermodynamic Analysis of Interfacial Tension Effects	30
	Determination of Interface Shapes at Equilibrium	35
2.4	Temperature and Contaminant Effects on Interfacial Tension	41
2.5	Effects of Interfacial Tension Gradients	45
	References	53
	Problems	54

3.2 3.3 3.4 3.5	Equilibrium Contact Angles on Smooth Surfaces Wettability, Cohesion, and Adhesion Effect of Liquid Surface Tension on Contact Angle Adsorption Spread Thin Films Contact-Angle Hysteresis References Problems	57 61 67 70 71 76 83 83
4	TRANSPORT EFFECTS AND DYNAMIC BEHAVIOR OF INTERFACES	85
4.1	Transport Boundary Conditions	85
	Kelvin-Helmholtz and Rayleigh-Taylor Instabilities	90
	Interface Stability of Liquid Jets	98
	Waves on Liquid Films	105
	Interfacial Resistance in Vaporization and Condensation Processes	112
	Maximum Flux Limitations	120
	References	124
	Problems	125
5	PHASE STABILITY AND HOMOGENEOUS NUCLEATION	127
5.1	Metastable States and Phase Stability	127
	Thermodynamic Aspects of Homogeneous Nucleation in Superheated	
5.2	Liquid	138
5.3	The Kinetic Limit of Superheat	145
	Comparison of Theoretical and Measured Superheat Limits	150
	Thermodynamic Aspects of Homogeneous Nucleation in Supercooled	
	Vapor	155
5.6	The Kinetic Limit of Supersaturation	160
	References	166
	Problems	166
PART 2	BOILING AND CONDENSATION NEAR IMMERSED BODIES	
6	HETEROGENEOUS NUCLEATION AND BUBBLE GROWTH	160
	IN LIQUIDS	169
6.1	Heterogeneous Nucleation at a Smooth Interface	169
	Nucleation from Entrapped Gas or Vapor in Cavities	176
	Criteria for the Onset of Nucleate Boiling	186
	Bubble Growth in an Extensive Liquid Pool	192
6.5	Bubble Growth Near Heated Surfaces	198
6.6	Bubble Departure Diameter and the Frequency of Bubble Release	206
	References	211
	Problems	213

3 WETTING PHENOMENA AND CONTACT ANGLES

57

C	n	N	rE	NΠ	rc	ix

7	POOL BOILING	215
7.2 7.3 7.4 7.5 7.6	Regimes of Pool Boiling Models of Transport During Nucleate Boiling Correlation of Nucleate Boiling Heat Transfer Data Maximum Heat Flux Conditions Minimum Heat Flux Conditions Film Boiling Transition Boiling References Problems	215 222 234 246 258 261 286 292 296
8	OTHER ASPECTS OF BOILING AND EVAPORATION IN AN EXTENSIVE AMBIENT	299
8.2 8.3	Additional Parametric Effects on Pool Boiling The Leidenfrost Phenomenon Evaporation of Thin Liquid Films Enhancement of Pool Boiling Heat Transfer References Problems	299 311 318 326 331 334
9	EXTERNAL CONDENSATION	337
9.2 9.3 9.4 9.5 9.6	Heterogeneous Nucleation in Vapors Dropwise Condensation Film Condensation on a Flat, Vertical Surface Film Condensation on Cylinders and Axisymmetric Bodies Effects of Vapor Motion and Interfacial Waves Condensation in the Presence of a Noncondensable Gas Enhancement of Condensation Heat Transfer References Problems	337 342 352 368 373 378 389 392 395
PART 3	INTERNAL FLOW CONVECTIVE BOILING AND CONDENSATION	
10	INTRODUCTION TO TWO-PHASE FLOW	399
	Two-Phase Flow Regimes Basic Models and Governing Equations for One-Dimensional	399
	Two-Phase Flow Determination of the Two-Phase Multiplier and Void Fraction Analytical Models of Annular Flow References Problems	411 420 439 449 450
11	INTERNAL CONVECTIVE CONDENSATION	453
	Regimes of Convective Condensation Analytical Modeling of Downflow Internal Convective Condensation	453 458

x CONTENTS

11.3	Correlation Methods for Convective Condensation Heat Transfer References Problems	467 480 480
12	CONVECTIVE BOILING IN TUBES AND CHANNELS	483
12.2 12.3 12.4 12.5	Regimes of Convective Boiling Onset of Boiling in Internal Flows Subcooled Flow Boiling Saturated Flow Boiling Critical Heat Flux Conditions for Internal Flow Boiling Post-CHF Internal Flow Boiling References Problems	483 490 499 508 524 539 557 563
PART 4	SPECIAL TOPICS	
13	SPECIAL TOPICS AND APPLICATIONS	565
13.2 13.3 13.4	Two-Phase Flow Instabilities Pool Boiling of Binary Mixtures Convective Boiling of Binary Mixtures Convective Condensation of Binary Mixtures Enhanced Flow Passages for Condensers and Evaporators References Problems	565 572 581 592 599 611 616
Appendix I Appendix II	Basic Elements of the Kinetic Theory of Gases Saturation Properties of Selected Fluids	619 629
	Index	639