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INVERSE FUNCTIONS



TO S. F. D.



Preface

THE PURPOSE of this xsmall work is fojimake available to students
(primarily of calculus) a: reasonétbly*com lete, self-contained treatment
of inverse functions, a sub]qct which is" diScussed in most calculus books
with distressing brevity. The =ffequently, is an inadequate under-
standing of the concept, especially in the case of the inverse trigonometric
functions.

When writing about functions one must choose between defining a
function as a set of ordered pairs or as a mapping. Although there are
very strong reasons for using the former approach, my own preference
is to emphasize the dynamic rather than the static form of the definition
(to quote Professor R. P. Agnew). For one thing, it is the réle of a function
in linear algebra and topology (and elsewhere) to provide a mapping from
one space to another; and for another, in the present work this view
enables me more easily to indulge my choice to define inverse function in
terms of the operation of composition of functions.

The following two conventions are used. (1) The end of a proof is
indicated by the symbol J|. This is in accordance with the custom initiated
by Professor Paul R. Halmos. (2) The exercises have been classified as
A, B, or C according to the following scheme: The more or less routine
drill exercises are in class A, the exercises designed to further the theoretical
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viii Preface

development of the text are in class B, and the class C exercises mostly
have to do with the Cartesian product of two sets and functions defined
on a subset of the plane. Answers or hints or outlines for proof are provided
for well over half of the exercises.

Various drafts of the manuscript were typed by Mrs. Florence Valentine
and by Mrs. Nancy Hall. In both cases the work was of high quality; I
am glad it is not my function to provide a ranking.

William K. Smith
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SecTtioN 1

Introduction

ONE OF THE PARTS of elementary calculus that is frequently—indeed,
almost invariably—given short shrift is that concerning inverse functions.
The subject arises when the logarithmic and exponential functions are
discussed. For example, if, as is sometimes the practice, the exponential
function is introduced first, then the logarithmic function may be defined
by saying

x = log, y means y = é*;

then, perhaps mysteriously, the letters x and y are interchanged so that
everything is in order, and we can write y = log, x.

Or, it may occur that in the study of the trigonometric functions the
following definition is introduced:

x =sin"ly or Xx = arcsin y means y = sin x.

This can present a more serious problem because, in the precise sense of
the word, the sine function does not have an inverse. Usually, this difficulty
is circumvented by an appeal to “principal value,” but this device does not

always produce the desired level of understanding.
With the recent increased emphasis on structure, and in particular on
algebraic structure, at the elementary level, and with the agreement that
1



2 Section 1

the definition of a function means what in the old days was called a *““single-
valued function,” it becomes essential that any discussion of inverse
functions bring out clearly and unambiguously two points:

1. The answer to the question, inverse with respect to what operation ?
2. It is the exception, rather than the rule, for a function to have an
inverse.

Our purpose here is to present a clear, rigorous, well-motivated
exposition of inverse functions, using the above two points as guiding
principles. As much as possible we have tried to keep within standard
conventions as regards terminology and notation. Although our primary
aim is to develop the concepts needed in an elementary calculus course,
that is, in terms of functions whose domain and range are subsets of the
field R of real numbers, we have kept the treatment as general as possible.

In Section 2 we list briefly the essential ideas from set theory, define a
function, and describe the notation for and operations on functions. In
Section 3 we develop the definition of an inverse function and illustrate
the concept with examples. Section 4 contains a short description of a
graphing technique which is sometimes useful. In Section 5 we prove, in
full generality, a few necessary theorems relating to the existence of inverse
functions, and in Section 6 these results are applied to functions which have
as domains and ranges subsets of the field of real numbers. The final
section is devoted to a lengthy discussion of the problem arising when a
function does not have an inverse; in particular, the inverse trigonometric
functions are treated in detail.



SEcTION 2

Notation and Prerequisites

IN THIS SECTION we list some of the necessary concepts that will be
used in the subsequent sections. In particular, we shall establish agree-
ments about notation and about the definition of a function.

2.1 Sets

We will have occasion to work with sets, by which we mean simply
collections of objects, usually referred to as elements. For example, a set 4
may consist of the first four positive integers; we indicate this as A4
={1, 2, 3,4}. Or, a set B may consist of all the real numbers between
0 and 1, inclusive. This is denoted by

B={x|0<x<1}

which may be verbalized as ““the set of all x satisfying the condition that x
is greater than or equal to 0 and less than or equal to 1.” The set B de-
scribed above is the closed (end points included) unit interval, sometimes
designated by the symbol [0, 1]. The open interval (end points excluded)
between a and b is the set

(@,b) ={x|a< x < b}
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We indicate that an element x is in the set X by writing x € X, read
“x is an element of X.” Thus, using the set B defined above, 4 € B, but 2
is not in B; this is indicated as 2 ¢ B.

Equality for sets is defined as strict identity; thus, A = B means 4 and
B contain precisely the same elements. One way of indicating this is by
saying x € A implies x € B and y € B implies y € A. A simpler way of
writing this is by using the symbol = for “implies”; also, the symbol <
may be used for “implies and is implied by or, equivalently, for “if and
only if” or “is logically equivalent to.” Thus, the above description of
equality can be expressed symbolically as

(i) xeAd=xeB,
A=B< and

(i) yeB=yeA.

If it should happen that only condition (i) of the above description
holds, i.e., if it should happen that x € 4 = x € B, then we say that 4 is a
subset of B, and write 4 C B. Notice that we always have 4 C 4. If
A C Bbut A # B, i.e., if there exists an element in B which is not in 4,
then we say that A is a proper subset of B. For example, the open interval
(0, 1) is a proper subset of the closed interval [0, 1], since x e (0, 1)
= x € [0, 1], and additionally, 0 € [0, 1] but 0 ¢ (0, 1); similarly, 1 € [0, 1],
but 1 ¢ (0, 1).

In addition to the two relations (= and C) between sets, there are
several operations for which we will have some use: union and intersection.
The union of the sets 4 and B, A U B, is the set of all elements in either
A or B:

AUB={x|xeAd or xeB}.

The intersection of the sets 4 and B, A N B, is the set of all elements in
both A4 and B:
ANB={x|xeAdandxeB}.

In order that no exceptions need be made we also define the empty set @
to be the set with no elements. When two sets have no elements in common
(their intersection = @) they are said to be disjoint.

Thus, if 4 ={1,2,3,4}, B={3,4,5,6}, C = {5, 6, 7}, then

AUB =1{1,2,3,4,5,6)
ANB =34

A E =D, 254,508
ANnC=.92.
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EXERCISES

A
1. Letd=1{1,2,3,4}, B={3,4,56,7},C={1,3,5,7,8}.
Find:

(a) AVB. (g AuB)UC.
(b) A4UC. (h) An(BnNnCO).
(¢ BuUC. i AnBUO).
(d AnNnB. G AnBuUMANC).
(e) AnC. k) Au(BnO).
f) BnC. O AUBNAUOCQO).

1 Tatd={x|0<x<2,B={F|l <2< U ={x]45x=< 10}
where x stands for a real number.

Find:

(a) AU B. i An@BuUO).

(b) A4UC. G) ANBuUMANCO).
(c) BuC. k) AuBNO).

(d ANB. O AUBNMAVO).
e) AnC. (m) AU A.

f) BnC. (n) BNB.

(& (AuB)uC. (o) ANnB)NB.

(h) AnB)NnC. ) ANBYUA.

3. LetA={xeR|3<x<5,B={xeR|3.5<x<4.5},
C={xeR|39<x<41},D={xeR|399 < x < 4.01},
E = {xeR|3.99 < x < 4.001}. R means the set of real numbers.
Find:

(a) ANnB. € ANBNCNDNE.
(b) CNE. f) AVBUCUDUE.
9 (BNnC)nD. (g ANE.
d (AVUC)UE. (h)y AVE.

4. Identify differently each of the following sets. In every case x € R,
i.e., x stands for a real number.
(@ 4={x|x2=4}.
(b) B={x|x= V4. (Answer: B = {2}.)
© C={x]|x=x}.
d D={x]|(x—3)(x+ I(x—11) = 0}.
€ E={x|x=VvV=T. (Answer: E = @)
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® F=fx|x=x
(g G={x]|2x+ 3 =15}
(h)y H={x|x# x}.

Refer to the sets in Exercise Al. Verify that:
(@ (AnB)CA.

(b) AnB)CB.

(c0 4C 4V B).

(d BC(4yVB).

() ANB=BnNA.

Same as Exercise A5, only use the sets in Exercise A2.

Letd =(1,3)={x|1<x<3,B=[3,5]={x|3<x<5,C=
5,6)={x|5<x <6}

Find:

(@) A Y B. What symbol might be used for this kind of interval ?
(b) B U C. Suggest a symbol. (Answer: [3,6).)

(c) AnB.

B
(a) If A C B, what can be said about 4 N\ B? About 4 U B?
(b) If AN B = A, what can be said about 4 and B?
(c) If AU B = B, what can be said about 4 and B?

If AUB = AU C, does B = C? Find an example to support your
answer.

If AN B = AN C, does B= C? Find an example to support your
answer.

(a) What can be said about 4 U (BU C)and (4 V B)U C?
(b) Is A U BU C meaningful ?

We consider {2} and 2. (A set with one element is called a singleton.)
(@) Is2e{2}?

(b) Is2C{2}?

(© Is{2}e2?

@ Is2=1{2}?

(e) Is{2} C2?

) Is{2} C{2}?

Prove from the definition that AN B = BN Aand A U B = BU A.
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7. If A and B are intervals in R, is A N B an interval? What about
A U B? (One way to handle this question is to consider the various
possible cases. Also, examine Exercises A3 and A7.)

8. Let B be any set. Prove that g C B.
Hint: Suppose @ is not a subset of B. Use the definition of the
relation 4 C B and find a contradiction.

C
Let A and B be sets. We define the cartesian product of A and B, A x B,
by the equation
A x B={(a,b)|ac A, be B},

where (a, b)* stands for the ordered pair consisting of first element a and
second element 4. For example, if 4 = {1, 2}, B = {x, y, z}, then

Ax B ={(1, x), (1, ), (1, 2), (2, x), (2, y), 2, 2)}.
1. For the above example, find B x 4. Does 4 x B= B x A?

2. For the above example, find 4 x 4 and B x B.

3. Suppose 4 has 5 elements and B has 7 elements. How many elements
are therein 4 x B?In B x A?

4. Let A be as above. Find 4 x &.
5. Suppose 4 x B = @. What can be said about 4 and B?

6. Let R = the set of real numbers. What is the geometric interpretation
of R x R? Notice that

R x R={(x,y)|xeR,yeR}.

7. See Exercise C6 above. In this exercise we introduce a concept from
analytic geometry which will be of use in Section 6. First a definition.

Definition. The two points Pi(x;, y;) and Py(x,, y,) are symmetric
with respect to the line y = x means exactly that the line y = x is the
perpendicular bisector of the line segment joining P, and P,.

*Note that the (a, b) here does not mean an open interval. Usually the context makes
it clear which meaning should be attached to (a, b).
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We now ask you to prove the following assertion:

Theorem.

P,(x,, y,) and Py(xs, y5) are symmetric} i {xz = yl}
with respect to the line y = x. Ya = X

Hints:
To prove the = part of the assertion either use some congruent
triangles or, if you prefer analytic methods:
(1) Use the normal form of the equation of the line y = x and the
expression for the distance from a line to a point to obtain

Xg — Y2 = —X1+)1. (%)
(2) Use the slope formula to obtain
X2 + Y2 = X1 + )1. (x¥)

(3) Solve (x) and (*x) simultaneously for x, and y, as unknowns.

2.2 Functions

Of the various ways of defining functions, the most satisfactory for
our present purposes is that which treats a function as a.mapping from one
set to another. Although we shall be concerned largely with functions
which map a subset (perhaps all) of the real numbers into a subset of the
real numbers, we give the definition in its general form.

Definition 1. A function f consists of a set X, a set Y (which may equal
X), and a rule which makes correspond to each element x € X exactly one
element f(x) € Y. The set X is called the domain of f and the subset of Y
defined as

f(X) ={ye Y|y = f(x), some x € X}
is called the range of f.

The range of fis, in other words, the set of all images under the mapping
(see examples below).

Functions may be described in various ways. For example, if X =
{1,2,3,4}, Y ={a, b, ¢, d, e}, the rule might be given by Table 1, the
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element appearing in the f(x) column being the image of the element
opposite it in the x column.

TABLE 1
x Jx)
1 a
2 b
3 c
4 a

Thus, f(1) = a, etc. Note that a = f(4) also, i.e., a is the image of both
1 and 4, an allowable occurrence. For this example the range f(X) =
{a, b, c}, a proper subset of Y.

In the sequel X and Y will often be subsets of the set R of real numbers,
and in these cases the rule will usually be given by some formula or
“recipe.” Then the domain will usually be taken as the largest admissible
subset of R.

Thus, if f has recipe f(x) = x2, all real numbers are admissible, so the
domain X = R; but the range f(X) = {y | y = 0} is the set of all non-
negative real numbers. Our earlier remark about looking on a function as
providing a mapping is illustrated in Figure 1. In this sense this function
maps all of R into the non-negative part of R—in geometric terms, the
entire x axis is mapped into the upper half of the y axis.

A

ol . graph of f
point x in domain with recipe
maps into point f(x) f(x) =
in range

-

taN - — — B —




