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Foreword

Smol'yakov and Tkachenko's book is a very thorough and
detailed survey of the response of hot wires and related trans-
ducers to a fluctuating flow field. Now that the electronic
equipment needed for hot-wire anemometry is so easy to make or
cheap to buy, transducer response is the most critical part of the
subject - except for the fragility of the sensing element , for
which textbooks are no remedy! We hope that this book will be
useful to all students and research workers concerned with the
theory or practice of these devices or the interpretation of
results.

Peter Bradshaw

Imperial College London



Preface

"The importance of experimental data and of experimentally
established general properties is often underestimated in
the study of turbulence.....The most direct path is to use

experimentally established properties as the foundation

upon which models explaining these properties can be

constructed."
M. D. Millionshchikov

L3
-

Turbulence belongs to a class of phy§3qalkpﬁenomena that are
very frequently encountered in both nature and teéhnology. It is the
most common and also the most complicated form of motion of real
liquids and gases. It is observed in the oceans, in the atmosphere,
and in a very wide range of systems in engineering. The rational
design of airplanes, rockets, ships, dams, hydroelectric plant,
canals, turbines, ventilators, and many other technological systems
must involve the consideration of turbulence. The study of turbulence
is vital in relation to marine flows, weather and climate forcasting,
wind distributions, and ecological problems associated with environ-
mental pollution. The theory of stellar evolution and general cosmo-
logical theories must also take account of the properties of turbu-
lent motion. It is thus clear that turbulence is indeed involved in
a very wide range of phenomena, and this is essentially the reason
why turbulence has been attracting the increasing attention of major
teams of scientists and engineers.

At the same time, turbulence is an exceedingly complex pheno-
menon to investigate. As in the kinetic theory of gases, one cannot
describe the motion of the individual elements of a medium that
participate in its turbulent motion. Fortunately, this degree of
detail is in fact unnecessary and turbulent motion is described as a
statistical ensemble of random fields. However, the resulting equa-
tions of motion do not form a closed system, and cannot therefore be
solved without the use of additional assumptions or of experimental
data. This means that one has to use experiment as a direct source
of information on turbulence or as a means of empirical accumulation
of information necessary for the closure of the original equations.
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The measurement of the statistical parameters of turbulence is
not at all a simple matter, especially for novice experimenters. The
difficulties flow 1largely from the following three circumstances
Firstly, the experimenter must be at least reasonably familiar with
the theory of random processes and fields so that he can appreciate
the relative usefulness of the different statistical parameters and
also the functional relationships between them. This is required if
the parameters to be measured are to be chosen judiciously.

Secondly, turbulence is a system with an exceedingly large
number of degrees of freedom. It usually involves a wide-band set of
different components of motion and internal forces, including essen-
tial contributions due to small-scale and high-frequency components.
This imposes stringent conditions on the measuring equipment in rela-
tion to its resolution in both space and time. The latter require-
ment is readily satisfied by modern electronics (if used correctly)
whose response can be made very rapid indeed, but this point must
always be borne in mind because older equipment may have inferior
time resolution.

The situation is much less satisfactory in relation to spatial
resolution. The necessary miniaturization of primary transducers
(input devices) is often a difficult technological problem that is
far from a satisfactory solution. Efficient spatial filtration, for
which transducer miniaturization is a necessary but not a sufficient
condition, is also a problem that remains unsolved.

The necessity for efficient spatial filtration of wavenumber
components of the random turbulent fields is the origin of the third
difficulty in the experimental investigation of small-scale turbu-
lence. It can be formulated as a problem in the interpretation of
the experimental data which are always distorted by the averaging
effect of the transducers. This means that the form of the signal
generated by a transducer is different from that of the turbulent
fluctuations acting upon it. The problem of reconstruction of the
true fluctuations from the recorded transducer signal belongs to the
class of the so-called ill-posed problems, and can only be solved
approximately. In fact, the a priori knowledge about the turbulence
field that is necessary for the solution of the problem must be
greater than the amount of information obtained as a result of our
measurements. Unfortunately, the experimenter cannot readily break
out of this vicious cirecle.
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The aim of the present book is to present a systematic account
of those aspects of the measurement of turbulent pulsations that
relate to the above three difficulties. The book can therefore be
divided into three parts that deal, in turn, with the following three
questions: what to measure, how to measure, and how to interpret the
results of measurement ? We shall concentrate on the last question
which has previously attracted least attention but is fundamental to
the measurement of turbulent fluctuations.

The first part of our book (Chapter 1) lays down the funda-
mental ideas of the statistical approach to the description of turbu-
lence. It introduces concepts that are important to the experi-
menter, namely, those of correlation and spectral analysis, it
explains the wavenumber-frequency representation of the random
turbulent field, it describes the classification of the different
measurable statistical parameters of turbulence, and it points out
the relationships between these parameters and their relative infor-
mation content. The presentation of this largely classical material
is different from that which a competent reader will find in the
excellent monographs by Batchelor [4], Hinze [47], and Monin and
Yaglom [19]. We have tried to achieve maximum simplicity and clarity
in the presentaion of the basic ideas of the theory of random fields
without introducing, whenever possible, excessive mathematical comp-
lication. We considered that the experimenter facing the difficult
task of measurement requires a clear appreciation of the essence of
the relevant phenomena more than the full rigor of the analytical
proof. In line with the modern practice, we have stressed the impor-
tance of multidimensional wavenumber-frequency spectra rather than
the separate wavenumber and frequency spectra. Cross-spectra are
therefore extensively wused throughout the book, in contrast to
previous monographs on turbulence.

The second part of the book (Chapter 2) presents the basic
ideas underlying experimental methods of determining the different
statistical parameters of turbulent fields of velocity, pressure,
shear stress, impurity concentration, and certain other physical
variables. Topiecs covered include the elements of the theory of
dimensions and similarity, the principles of operation of specialized
equipment, and the specific experimental uncertainties that charac-
terize the measurement of turbulent fluctuations. Since the range of
topics covered in this part of the book is very wide, the account is



necessarily restricted to fundamentals. More detailed accounts will
be found in the very extensive specialist literature that is now
available and is cited throughout the text. Unfortunately, this
literature takes the form of individual papers scattered over a large
number of periodicals. There are only two monographs in which the
technique of measurement of turbulent fluctuations is examined in
detail. These are the books of Hinze [U4] and Bradshaw [3], which are
mainly concerned with hot-wire anemometry. We consider that a brief
but thorough-going review of modern experimental methods and techni-
ques, and of the associated experimental uncertainties, should fill a
gap in the current literature on turbulence.

The third part of our book (Chapters 3, U4, and 5) is devoted to
the very difficult and important problem of interpretation of expe-
rimental results that are distorted by the averaging effect of
transducers of finite size. Here we encounter a specific experi-
mental uncertainty that is very important and very difficult to avoid
or take into account. It was first considered in relation to turbu-
lence by Uberoi and Kovasznay [87] and was further examined by Corcos
[64 - 66] and by Petrovskii [26]. However, many new results have
been obtained (some by the present authors) since the publication of
these papers. The principal method which is at present uniquely
suited to the problem of extracting the true picture from experimen-
tal data (and thus escaping from the vicious circle mentioned above)
is that based on the preliminary introduction of more or less likely
models of the turbulent field, which are then used to find the
required correction functions. These functions do not necessarily
lead to complete success, but the extent to which they are inadequate
can be exploited as the starting point for the subsequent improvement
of the original models. This process is continuing, so that it is
not surprising that we have not provided in this book any hard and
fast recipes suitable for all cases. This approach follows the lines
suggested by the above quotation from the paper by Academician D.M.

Millionshchikov at the 1972 Moscow Symposium on Turbulence.

Statistical models of turbulent fields had to be included in
this book. Models of turbulent pressure fluctuations, the measure-
ment of which 1is subject to greater uncertainties than that of
velocity fluctuations, are examined in some detail. In the case of
the latter fluctuations, we have confined our attention to correction
functions for isotropic turbulence. Experimental data (our own and



those due to others) are cited only to the extent to which they help
in explaining the principles involved in measurement.

It is, of course, impossible to review all aspects of turbu-
lence measurement between the hard covers of a single book. For
example, we have not been able to cover the measurements of magneto-
hydrodynamic turbulence, turbulence with clearly defined stratifi-
cation of physical properties, and turbulence accompanied by chemical
reactions. We have concentrated our attention on measurements of the
most commonly employed, or the most highly distorted, parameters of
incompressible 1liquids. In many cases, the ideas and methods
discussed are of a more general significance and can be extended to

other flows and parameters.

The book 1is designed for a wide range of specialists
involved in the experimental investigation of turbulence with the
view to finding new relationships or solving technological problems.
It may also be found useful by researchers with theoretical
interests, who need to develop models of turbulent fields on the
basis of experimental data. It is probable that the book will be
found most wuseful to engineers, researchers, and more advanced
students facing for the first time the problem of measuring the sta-
tistical parameters of turbulence or of developing the apparatus and

instrumentaion for such measurements.

Chapters 1 and 2, and also Sections 4.2 and 4.4, were written
by A.V Smol'yakov, Chapters 3 and 4 (apart from the Sections just
mentioned) and Sections 5.1 and 5.2 were written by V.M. Tkachenko,
and Section 5.3 was written jointly.

The authors are greatly indebted to V.S. Petrovskii for his
stimulating advice and for his unfailing interest throughout the
writing of this book.

X



Contents

Chapter One STATISTICAL DESCRIPTION OF TURBULENCE

1 Turbulence as a Random Process
2 Statistical Averages of Random Variables
.3 Stationarity and Homogeneity
4 Spectral Decomposition

5 Connection Between Correlation and Spectral Functions
6 The Equations of Turbulences

Chapter Two MEASUREMENT OF TURBULENT FLUCTUATIONS

2.1 Modeling of Statistical Characteristics of Turbulent
Fluctuations

2 Experimental Systems

3 Thermo-anemometry (Hot-wire and Hot-£film)

4 Doppler method

.5 Other Methods of Measuring Turbulent Fluctuations

6 Instrumental Processing of Recorded Fluctuations

7 Experimental Uncertainties

Chapter Three TRANSDUCERS OF FINITE SIZE IN TURBULENT
FLUCTUATIONS

.1 General Relationships

.2 Spatial and Wave Characteristics of Simple Transducers

.3 A System of Transducers as Frequency Filter

.4 Correction Functions for a Field of Velocity Fluctuations

wwww

Chapter Four STATISTICAL MODELS OF TURBULENT FIELDS

4.1 Models of the Field as a Basis for Correcting the Results
of Measurements

4.2 Corcos Model of the Turbulent Pressure Field and Its
Simplest Modifications

3 Departure from Multiplication Hypothesis

4 Diffusion Model

.5 Convection Model

6 Phase Velocity of Cross-Spectrum

Chapter Five CORRECTION FUNCTIONS FOR THE PRESSURE
FLUCTUATION FIELD

5.1 Power Spectrum

5.2 The Cross-Spectrum

5.3 Measurements with Wave Filters
REFERENCES

SUBJECT INDEX

129
146

174
194

212

220
224
235
239
251

257
268
282

290
296

Xl



Chapter1

Statistical Description of Turbulence

1.1 Turbulence as a Random Process

The most immediate impression of turbulent flow is, probably, that it
is an exceedingly complicated, tortuous and chaotic phenomenon. The
experimenter equipped with instruments capable of recording the para-
meters of a turbulent flow will soon conclude that all these parameters
fluctuate in an irregular fashion.

Turbulent flows are very different from the smooth, laminar flow
demonstrated by the classical experiments of Osborne Reynolds [80] in
which a small filament of dye introduced into a laminar flow showed
practically no lateral spreading. However, laminar flow is very unusual
both in nature and in technology since it occurs only at very low
velocities and on a very small spatial scale. Sutton [37] has remarked
that "We might proceed by attempting to define laminar motion as the
exceptional case and then say that other motions of liquids are turbu-
lent." 1In this book, we shall confine our attention to turbulent flows.

The following property of turbulent flows will have to be borne in
mind in the ensuing account: when an experiment is repeated, one cannot
reproduce exactly all the details of the turbulent velocity field or
other fluctuating variables, such as pressure, temperature, density,
impurity concentration, and so on. For example, if we produce a turbu-
lent flow in a tube connecting two reservoirs, we find that the instan-
taneous flow velocity at a given point in the interior of the tube at a
given time (measured, for example, from the beginning of the experiment)
is appreciably different when the experiment is repeated under seemingly
identical conditions. We note particularly that the instantaneous
values of turbulent fluctuations cannot be predicted for any point within
the flow or for any instant of time.

The obvious chaotic character of turbulent motion and the unpredict-
ability of its details do not, however, mean that turbulent fluctuations
do not follow certain cause-and-effect regularities. On the contrary,
the modern theory of turbulence takes as its starting point the assumption
that all the details of the flow are completely determined by the equa-



tions of motion of a viscous fluid (the Navier-Stokes equations), i.e.,
it is assumed that, if one could find the exact solutions of the Navier-
Stokes equations for each particular situation, and if all the data on
the initial and boundary conditions were available for the flow, one
could predict all the fluctuations in a turbulent flow at each point at
any time.

However, the general solutions of the Navier-Stokes equations have
not as yet been found. The boundary conditions are also partly unknown
because they involve such uncontrollable parameters as weak, random
variations in the position of the walls bounding the flow and small
perturbations in density, pressure, and temperature of the medium, which
are due to a variety of subsidiary and practically unavoidable factors.
In other words, variations in the fluctuating parameters of turbulence
obtained as a result of repeated and seemingly identical experiments are,
in reality, due to uncontrollable variations in the boundary and initial
conditions governing the flow. The unpredictability of turbulent fluc-
tuations is simply the result of our ignorance of these conditions.
Moreover, even if the boundary conditions were to be known, exact pre-
dictions would still be impossible because we are still unable to solve
the complicated, nonlinear Navier-Stokes equations.

The actual situation is often even worse. Many types of turbulent
flow are complicated by various additional factors that are not taken
into account in the Navier-Stokes equations and, generally speaking, we
do not have at our disposal a rigorous mathematical formulation of the
problem. These factors include the effect of humidity, solar radiation,
and other thermodynamic effects in problems involving atmospheric turbu-
lence, departures from the continuity of the medium in technological
processes due to the presence of solid, gel-like and, generally, foreign
impurities, non-standard rheological behavior of liquids based on new
materials, and so on. The Navier-Stokes equations must then be modified
by introducing additional hypotheses, the validity of which may be in
some doubt and their direct experimental verification not always possible.

Greater familiarity with the problem of turbulence shows, however,
that it is not as hopeless as might appear at first sight although the
associated theoretical and experimental difficulties are undoubtedly very
considerable. Turbulence is commonly studied by statistical, probabil-
istic methods because of the random nature of turbulent fluctuations.
When this approach is adopted, and it is the only possible approach at
the present time, neither the theoretician nor the experimenter is
interested in the instantaneous values of the fluctuating variables,
which are not needed in practise. The achievable aim (which is also of



practical interest) is to determine only the statistical parameters of
turbulence.

Measurements will yield the average statistical parameters if we
deliberately arrange for the measuring devices and transducers to react
in a particular way to the action of the turbulent fluctuations. It is
important to ensure that the measuring system and the underlying methods
do, in fact, perform the desired function, i.e., that they are capable
of yielding data on the average statistical variables of interest.

In practise, one often cannot avoid instrumental uncertainties,
above all, those associated with measuring transducers, and uncertainties
associated with the specific experimental conditions. Because of this,
rational processing of experimental data for these random variables, and
the interpretation of these data, are at least as important for the
problem of turbulence as the measurements themselves. This is greatly
assisted by performing measurements in parallel with an analytic approach
to the problem, based on physical models on the one hand and the mathe-
matical formalism of probability theory on the other.

We shall therefore begin our account with certain simple ideas and
concepts in probability theory, which are used both in measurements on
random turbulent fluctuations and in the processing and analysis of the
results obtained from these measurements.

Probability distributions. The experimenter frequently has to

deal with different turbulence parameters which, at a given instant of

time and a fixed point in the flow, form a set of unpredictable and, in
that sense, random quantities. These may include both scalar (tempera-
ture, pressure, and density) and vector (velocity and vorticity) vari-

ables.

In the statistical approach, the random variables are characterized
by probability distributions which provide a quantitative measure of the
probability of appearance of a random turbulent fluctuation in a parti-
cular range of values of a given variable.

Suppose, for example, that p(x, t) is the pressure at time t at
the point x(x;, X2, X3) in a liquid or gas undergoing turbulent motion
(x1, X2, x3 are the components of the vector x defining the position of
the point of observation). Repeated measurements of this random variable
in a large number of outwardly identical experiments will show that some
values of p(x, t) are encountered more frequently than others. As soon
as a sufficiently large number of such observations becomes available,
we can construct the probability distribution w(p) for the random
variable p. An example of this distribution is shown in Fig. 1.1.



The dimensionality of the function w(p) is always the reciprocal
of the dimensionality of the random variable itself, and the dimensioniess
number.

Po+Ap
S(po, Ap) = [ w(p)dp {1 wd)
Po

is a measure of the fraction of all experiments in which the random
variable p is found to lie between p, and p, + Ap.

If the interval p is small enough, the density w(p) may be assumed
to be constant within this interval, and we have the approximate result

S(po, AP) = w(po)Ap

The "measure of the fraction" for all experiments that have been
performed (whatever their outcome) is assumed to be equal to unity:

©
[ wip)ap =1 (1.2)
-
which can be looked upon as the normalization condition for the function
w(p). The condition given by (1.2) can also be looked upon as the trivial
expression of the fact that each experiment must record some value of
the random variable p (whatever it is). The turbulent pressure p(x, t)
and its distribution w(p) were, of course, chosen only as a simple
example (we shall occasionally use it again in the ensuing account). All
that we have said is equally valid for the distributions of other random
turbulent fluctuations.

If, by virtue of some physical restrictions, the random variable
can assume values only within a certain limited interval, the limits of
the interval will also be the limits of integration in (1.2).

The infinite limits in (1.2) must not be interpreted as meaning
that turbulent fluctuations can have infinite (positive or negative)
values: such events have, of course, zero probability. Nevertheless,
if the actual maximum possible values of the turbulent fluctuations are
unknown, the infinite limits can be retained in (1.2). This does not
lead to an error because regions with the zero probability do not con-
tribute to the integral.

It was assumed in the above discussion that the random variable
could assume any value within a finite or infinite interval, and that
these values filled the interval in a continuous fashion. Such random
variables are referred to as continuous, and turbulent fluctuations
belong to this particular category. We shall not, therefore, consider
the so-called discrete random variables which are encountered in other



applications of probability theory and can assume only certain definite
values within a given interval, i.e., do not fill it continuously.

The function w(p) shown in Fig. 1.1 is often referred to as the
probability density or the differential distribution. The latter desig-
nation is intended to emphasize the difference between this function and
the integral distribution given by

Po
F(po) = [ w(p)dp (1.3)

which gives the probability that the random variable does not exceed
some given arbitrary level p .

It follows from (1.3) that F(-«») = 0 and F(«) = 1, where the latter
relation is equivalent to the normalization condition (1.2) for the
density wi(p).

The function F(py) is called the integral distribution'because
of the form of (1.3), whereas the differential distribution is defined
by the inverse of (1.3):

F(p + Ap) - F(p) dF(p)

w(p) = lim =
Ap~+0 Ap dp

A random variable is considered fully determined in the statistical
sense if its differential or integral distribution is known.

It is quite obvious that the correct determination of the distri-
bution of a random variable can only be based on observations resulting
from a sufficiently large number of experiments (realizations). In
fact, the theory demands an infinitely large ensemble of realizations.
On the other hand, the experimenter has no option but to accept a finite
set of experiments. However, the number of experiments must not be less
than a certain admissible limit if one is to achieve the required pre-
cision in the determination of the distribution law and to preserve the
information content of the data. We shall return to this point in
Section 2.7 in connection with measurements of the statistical parameters
of turbulence.

1.2 Statistical Averages of Random Variables

Distribution moments. The most common object of experimental and
theoretical study of turbulence is not the probability distribution

itself but its numerical characteristics, known as the distribution
moments. These are defined by



mk(p) = pk(E, t) = fpkw(P)dp k=2 25 svey @ (1.4)
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and are determinate, nonrandom numbers.

Determination of the complete set (k =1, 2, ..., @) of the distri-
bution moments is equivalent, from the point of view of information
content, to the determination of the differential or integral proba-
bility distributions.

The integration of a certain power k of the random variable p(x, t)
weighted by the probability density w(p) in (1.4) may be looked upon as
a probabilistic or statistical operation yielding the average of the
random variable pk(g, t). This is indicated by the second designation
of the distribution moment in (1.4), in which the bar above the variable
is a more compact representation of statistical averaging than the
integral sign. The notation <pk(§, t)> is often used instead of

k
p (x, t).
It is readily seen that the first-order moment (k = 1) or, more
briefly, the first moment, is given by

m (p) = <p(x, t)> = [ pw(p)dp (1.5)
l - 00

and is simply the average hydrodynamic pressure at a given space-time
point (x, t) in the turbulent flow. The first moment of a random vari-
able is often referred to as its mathematical expectation. The mathe-
matical expectation can be represented geometrically by the abscissa of
the center of gravity of the area under the curve representing the
probability density (Fig. 1.1). This can readily be verified by inspec-
tion of (1.5).
If the random variable is taken to be the fluctuating velocity of
a turbulent flow, the first moment is equal to the average velocity.
Early work on turbulent flows was concerned with the first moments
or the mathematical expectations of velocity, pressure, frictional stress
and certain other random parameters of turbulence. The second, third,

w(p) W(p’)
Figure 1.1
o | Example of the probability density
1S of a random turbulent fluctuation:
— [ P c is the "center of gravity" of the
0l <p Do PotAp area under the curve




and higher-order moments subsequently became accessible to measurement
and theoretical analysis. The current tradition is that only such work
is part of statistical research into turbulence. This, however, is not
entirely correct because studies of the mathematical expectations of
turbulent fluctuations are also statistical studies of the simplest
characteristics. On the other hand, we have already noted that the
statistical approach is the only possible one in the study of any para-
meters of random turbulent fields.

When turbulence and many other random processes are investigated,
it is common practise to resolve the corresponding random variable into
two components, namely, the nonrandom, determined mathematical expec-
tation and the random fluctuation about this mathematical expectation:

p=m(p) + p' or p=<p>+ p'

i.e., the random variable is now taken to be not the total value of p
but only the fluctuation p' = p - <p> about the average value <p> =
=m; (p).

It is clear that the first moment of p' will be zero, by definition,
and the center of gravity of the area under the probability density curve
will lie on the ordinate axis (Fig. 1.1). 1In this sense, the random
variable p' may be referred to as centered, and its distribution function
W(p') and its moment Mk(p') as the central distribution and moments,
respectively. We shall largely be concerned with centered variables and
will omit the prime for the sake of simplicity.

The second central moment, or the varZance, of turbulent pressure
fluctuations, i.e.,

©
M, = <p®> = [ pPW(p)ap
“

is a measure of their intensity. The variance of turbulent velocity
fluctuations has the dimensions of the square of velocity, and is pro-
portional to the kinetic energy of the fluctuating part of the turbulent
motion.

The square root of the variance, or the standard deviation of the
random variable from the average,

o = [M,(p)]}/2

can be represented geometrically by a certain effective width of the

region under the probability density curve (Fig. 1.1). The greater the
standard deviation, the more uncertain is the random value of the given
fluctuation, and vice versa. As ¢ - 0, the random fluctuations vanish



