~ SELECTED

- PROBLEMS

inﬂUANTUM
MECHANICS

D ter HAAR

R T e Tl A sy rud Mapft TR



SELECTED PROBLEMS IN
QUANTUM MECHANICS

Collected and edited by

D. ter Haar

Revised and augmented second edition of Gol'dman,
Krivchenkov, Kogan, and Galitskii, ‘‘Problems in
Quantum Mechanics™

INFOSEARCH LIMITED
LONDON



© 1964 by Infosearch Ltd.
All Rights Reserved

This book of any part thereof must not
be reproduou}, without the ®riften
permission of the publishers

Infosearch Litd.,
207 Brondesbury Park,
London, N.W.2

Distributed outside the U.S.A. by

Macmillan and Co. Ltd.
(Incorporating Cleaver Hume Press Ltd.)
St. Martin’s Street,

London, W.C.1

PRINTED IN GREAT BRITAIN BY JOHN WRIGHT & SONS LTD., AT THE STONEBRIDGE PRESS, BRISTOL



Preface

This is essentially an enlarged and revised second edition of a collection
of problems which consisted of a text by Gol’dman and Krivchenkov
augmented by a selection from a similar text by Kogan and Galitskii.

In preparing the present edition I have used the opportunity to revise
some of the problems in the first edition, to change a few of the solutions,
and to make the notation both uniform and conforming to English usage.
Also, I have added a few problems from a collection by Irodov on atomic
physics and a number of new problems which were mainly taken from
Oxford University Examination papers. I should like to express my
thanks to the Oxford University Press for permission to include these
problems.

These problems can be used either in conjunction with any modern
textbook, such as those by Schiff, Kramers, Landau and Lifshits, Messiah,
or Davydov, or as advanced reading for anybody who is familiar with the
basic ideas of quantum mechanics from a more elementary textbook.

D. TER Haar
Oxford,
September 1963
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PROBLEMS

1

One-dimensional Motion; Energy Spectrum
and Wave Functions

1. Determine the energy levels and the normalised wave functions of
a particle in a “potential well”. The potential energy ¥ of the particle is:

V=0 for x<0and for x>a; V=0 for O<x<a.

2. Show that for particles in a “potential well” (see preceding
problem) the following relations hold:

——  g? 6
F=1 %)2 = {1 ——
X=13a, (A-%?= 17 (1 nzﬂz).
Show also that for large values of n the above result agrees with the
corresponding classical result.

3. Determine the momentum probability distribution function for
particles in the nth energy state in a “potential well”.

4. Determine the energy levels and wave functions of a particle in
an asymmetrical potential well (see fig. 1). Consider the case where
V=V,

AV

Fig. 1.

5. The Hamiltonian of an oscillator is equal to H = $%/2p + pw? £2/2,
where p and £ satisfy the commutation relationships pz —£p = —ik. In

order to eliminate %, p, and w from the calculations, we introduce new
variables P and 0,

mﬁmp, Q‘=A/(%)ﬁ (PO~ QP = —i),

t Operators are indicated by a caret ~.,

1



2 PROBLEMS 1.6

and the energy E will be expressed in units hw (E = efiw). The
Schrodinger equation for the oscillator in the new variables will be of

the form )
H' = }(P*+ 0% ¢ = «.
(a) Use the commutation relation PQ — QP = —i, to show that
3(P2+ 0% (Q 1Py ¢ = (e Fn)(Q £ iPY 4.

(b) Determine the normalised wave functions and the energy levels
of the oscillator.

(c) Determine the commutator of the operator d = (1/{2)(Q +iP)
and its Hermitean conjugate operator 4+ = (1/J2)(Q —iP). Express the
wave function of the nth excited state in terms of the wave function of
the ground state using the operator 4.

(d) Determine the matrix elements of the operators P and Q in the
energy representation.

Hint. P24+ (02— 1 = (P+i0)(P-i0).

6. Using the results of the preceding problem, show by direct
multiplication of matrices that for an oscillator in the nth stationary
state we have

@ =3 = (a4 @FF = 7 = ol +D).

7. A particle moves in a potential V(x) = }uw®x® Determine the
probability w to find the particle outside the classical limits, when it is
in its ground state.

8. Find the energy levels of a particle moving in a potential of the
following form:

2 42
V() =0 (x<0); V(x)= "“’2" (x> 0).

9. Write down the Schriodinger equation for an oscillator in the
‘“p-representation” and determine the momentum probability distribu-
tion function.

10. Find the wave functions and energy levels of a particle in a
potential V(x) = V(a/x—x/a)® (x>0) (see fig. 2) and show that the
energy spectrum is the same as the oscillator spectrum.

11. Determine the energy levels for a particle in a potential
V = —~V,[cosh?(x/a) (see fig. 3).

12, Determine the energy levels and wave functions for a particle in
the potential ¥V = V;cot?(nx/a) (0<x<a) (see fig. 4), and derive the
normalisation constant of the ground state wave function.

Consider the limiting cases of small and large values of ;.
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T'(x)

4 1)

Fig. 4.



4 PROBLEMS 1.13

13. Determine the wave functions of a charged particle in a uniform
field V(x) = — Fx.

14. Write down the Schraédinger equation in the “p-representation’
for a particle moving in a periodic potential V' (x) = I} cos bx.

15. Write down the Schrédinger equation in the *“‘p-representation”
for a particle moving in a periodic potential V(x) = V(x+b).

16. Determine the allowed energy bands of a particle moving in the
periodic potential given by fig. 5. Investigate the limiting case where
V,— o0, and b— 0 while V3 b = constant

V()

a a+b x

Fig. 5.

17. Determine the energy levels of the potential ¥V = —V,/cosh?(x/a)
in the semi-classical approximation, and also the total number of discrete
levels.

18. Determine in the semi-classical approximation the energy
spectrum of a particle in the following potentials:

(a) V = juw?x? (oscillator);

(b) V =V,cot?(nxja) (D<x<a).

19. Determine in the semi-classical approximation the average value
of the kinetic energy in a stationary state.

20. Use the result of the preceding question to find in the semi-
classical approximation the average kinetic energy of a particle in the
following potentials:

(a) V= {uw?x?;

(b) V =V,cot?(mx/a) (0O<x<a) (see problem 18).

21. Determine the form of the energy spectrum of a particle in a
potential FV(x) = ax*, using the semi-classical approximation and
applying the virial theorem.

22. Determine in the semi-classical approximation the form of the
potential energy V(x) for a given energy spectrum E,. V{(x) may be
assumed to be an even function "V(x) = V(—x), which increases
monotonically for x> Q.

23. Find the wave functions and energy levels of the stationary
states of a plane rotator with moment of inertia I.

A rotator is a system of two rigidly connected particles rotating in a
plane (or in space). The moment of inertia of a rotator is equal to
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I = ua® where p is the reduced mass of the particles and a their distance
apart.

24. Find the wave functions and energy levels of the stationary
states of a particle of mass p in a uniform gravitational field g for the
case when the region of the motion of the particle is limited from below
by a perfectly reflecting plane. (As a classical analogy of this system we
can take a heavy solid ball, bobbing up and down on a metallic plate.
We note that all calculations and results of this problem are clearly
correct also for the case of the motion of a particle of charge e in a
uniform electric field &, in the presence of a reflecting plane, provided
we replace in all equations g by (e/m)&.) Take the limit to classical
mechanics.

25. A particle is enclosed in a one-dimensional rectangular potential
well with infinitely high walls. Evaluate the average force exerted by
the particle on the wall of the well.

26. A particle in an infinitely deep rectangular potential well is in a
state described by the wave function

Y(x) = Ax(a—x),

where a is the well width and 4 a constant.

Find the probability distribution for the different energies of the
particle and also the average value and the dispersion of the energy.

27. Obtain the semi-classical expression for the energy levels of a
particle in a uniform gravitational field for the case where its motion is
limited from below by a perfectly reflecting plane.

28. A particle moves in a periodic field ¥V (x):

V(x+a) = V(x).

Using a suitable semi-classical approximation obtain a transcendental
equation to determine the allowed energy bands. Discuss this equation.

29. Find the semi-classical solution of the Schrodinger equation
in the momentum-representation.

Show that the same semi-classical function is obtained by going over
from the “x-representation” to the “p-representation” starting from the
usual semi-classical coordinate wave function.

30. When and why do we call a solution of the Schrédinger equation
a stationary one? Show that they occur only if the potential energy does
not depend explicitly on the time.

31. What is the physical meaning of the fact that, if the potential

energy V' does not depend explicitly on the time, the Schriodinger



6 PROBLEMS 1.32
equation can be written in either of the two forms

ARG W
izTsz = 2MV g+ Vi,
that is, with a plus or a minus sign in front of the time derivative ?

32. What is the change in the total wave function, describing a
stationary state, if we add a constant to the potential energy ?

33. For what width of a one-dimensional infinite square well do the
distances between the lowest energy levels of a proton or an electron
become comparable to the average kinetic energy of such a particle at
temperature T'?

34. If the wave function of a plane rotator at ¢ =0 is given by
¥(p,0) = Asin®p, where 4 is a normalising constant, what will be the
wave function (g, t) at time £?

35. A simple model of the electronic energy levels in a metal uses a
one-dimensional potential of the form

R2P
Vix) = T "=}j_w8(x+1za),
where p is the electron mass, a the lattice constant, P a positive,
dimensionless constant, and &(x) the Dirac delta-function. Find
expressions for the effective mass at the upper band edges.

36. A bead of mass u is confined to a thin wire which forms a rigid
circular loop of radius a. Find an expression for the tension in the wire
when the system is in a stationary state, assuming the wire to be
unstressed before the bead is placed on it.

37. A one-dimensional “hydrogen” atom is one in which an electron
confined to the x-axis is acted upon by a force inversely proportional to
the square of its distance from the origin. Find the energy eigenvalues
and the eigenfunctions of this system.

38. A particle oscillates in a one-dimensional potential field between
two turning points x = g and x = b. The former is due to a vertical
potential wall, while the latter is of the more usual type with dV/dx
finite. Apply the WKB method to find the quantisation condition for a
stationary state in such a potential.

39. An electron of mass u moves in a one-dimensional potential

-

2
V(x)=-—- fiﬁf 8(x%— a?),

where P is a positive dimensionless constant, §(x) the Dirac delta-
function, and a a constant length. Discuss the bound states for this
potes:tial as a function of P.
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40. Justify the use of
b Ba/: u/;
Z;u (‘l’* '/l )

and p = y* as probability current density and probability density
respectively. Show that for particles scattered by a complex potential

V(x) (1+1§),
) l 9 op 2V(x)ép
Fra T A

41. Determine the energy levels for a particle in a potential
V(x) = D(1—e—*)2.

- 42. Use a variational principle to prove that any purely attractive
one-dimensional potential has at least one bound state.
43. A particle of mass u moves in a one-dimensional potential AV (),
where V(x) satisfies the conditions

V(x)=0, x<0; V(x)=0, x>a, AfaV(x)dx<O.
o

Prove that, if A is sufficiently small, there exists a bound state with an
energy E which is approximately given by

~%%ZU:V(x)dx]2.



2
Tunnel Effect

1. In studying the emission of electrons from metals, it is necessary
to take into account the fact that electrons with an energy sufficient to
leave the metal may be reflected at the metal surface. Consider a one-
dimensional model with a potential V" which is equal to —}; for x< 0
(inside the metal) and equal to zero for x>0 (outside the metal) (see
fig. 6), and determine the reflection coefficient at the metal surface for an
electron with energy E>0.

! A

4
Fig. 6.
2. In the preceding problem it was assumed that the potential
changed discontinuously at the metal surface. In a real metal this change
in potential takes place continuously over a region of the dimensions of

the order of the interatomic distance in the metal. Approximate the
potential near the metal surface by the function

"
V= _eT/m (See ﬁg. 7)

1. V{x)

and determine the reflection coefficient of an electron with energy E > 0.
8



2.7 TUNNEL EFFECT 9

3. Determine the coefficient of transmission of a particle through a
rectangular barrier (see fig. 8).

LV
To
1 I I
Fommmmmm o] IR I
[ a .
'.\:
Fig. 8.

4. Determine the coefficient of reflection of a particle by a rectangular
barrier in the case where E >V, (reflection above the barrier).

5. Calculate the coefficient of transmission through a potential
barrier V(x) = Vy/cosh?(x/a) (see fig. 9) for particles moving with an
cnergy E<V,.

V(s)
1%

0 x

Fig. 9.

6. Calculate in the semi-classical approximation the coefficient of
transmission of electrons through a metal surface under the action of a
large electrical field strength F (fig. 10). Find the limits of applicability
of the calculation.

V(s)

__'[{)

Fig. 10.

7. The change of the potential near a metal surface is in reality a
continuous one. For instance, the electrical image potential V, ;. = —e/4x
will act at large distances from the surface. Determine the coefficient
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of transmission D of electrons through a metal surface under the action of
an electrical field, taking into account the electrical image force (fig. 11).

T V(%)

Fig. 11,

8. Determine approximately the energy levels and wave functions
of a particle in the symmetrical potential given by fig. 12 for the case
where E <V, and the penetrability of the barrier is small [(2.V,[%2) 52> 1].

AVE)
%
IPEDEDE SPRUE SRR Sy
0 a at+b  2a+d x
Fig. 12.

9. A symmetrical potential V(x) consists of two potential wells
separated by a barrier (see fig. 13). Assuming that one may use a semi-
classical argument, determine the energy levels of a particle in the

AV()

ER 4

-6 —al0+a +b
Fig. 13.
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potential V(x). Compare the energy spectrum obtained with the energy
spectrum of a single well.

10. Assume that at z=0 there exists an impenetrable partition
between the two symmetrical potential wells (see preceding problem)
and that a particle is in a stationary state in the well on the left.

Determine the time 7 it takes after the partition is removed before the
particle will be in the well on the right.

11. The potential ¥V (x) consists of N identical potential wells
separated by identical potential barriers (see fig. 14). Determine the

| V()

b o = -
b e - = -

)
!
)
1
]
1

e - — -
O e e e -
r....._...__.
be = = -

e e ———— -

Y SR
Sheeeoo
1

)
-

o
@

o
v

Fig. 14.

energy levels in this potential, assuming that one can use the semi-
classical approach.

Compare the energy spectrum obtained with the energy spectrum of
a single well.
12. Assuming that one may use the semi-classical approach, find

the quasi-stationary levels of a particle in the symmetrical field given by
fig. 15.

AV

Fig, 15.

Find also the transmission coefficient D(E) for a particle with
energy E <V, where ¥ is the maximum value of the potential V' (x).

13. Show generally that for any barrier the relation R+ D =1 is
automatically satisfied, where R is the reflection coefficient and D the
transmission coefficient.
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14. Find the coeflicient of transmission of a particle through a tri-
angular barrier (see fig. 16). Consider the limiting cases of small and of
large penetrability.

V()

4
T
—~a 0’ a x
Fig. 16.

15. Evaluate in the semi-classical approximation the transmission
coefficient for a parabolic potential barrier of the following form
(see fig. 17):

e
I{,(l——i) for —a<x<aq,
a

V(x) = (1)

0 for |x|>a.

Give the criterion for the applicability of the result obtained.
AV

TN

—a & 0 Xy a ~

Fig. 17.

16. Estimate the transmission coefficient obtained in problem 6 of
section 2 for Fje =107 or 2.10?/V cm1 and E = 1 eV.

17. A particle is moving along the x-axis. Find the probability for
transmission of the particle through a delta-function potential barrier
at the origin.



