- The Carnegie- -Mellon
Curriculum for Undergraduate
| Computer Science

Edited by Mary Shaw

5

ringer-Verlag
w York Berlin Heidelberg Tokyo

TP3-43

>/ 8564620

The
Carnegie-Mellon
Curriculum for
Undergraduate
Computer Science

Edited by
Mary Shaw

This curriculum and its description were developed during
the period 1981-1984 by Stephen D. Brookes, Marc Donner,
James Driscoll, Michael Mauldin, Randy Pausch,
William L. Scherlis, Mary Shaw, and Alfred Z. Spector

E8564620

¢4

Springer-Verlag
New York Berlin Heidelberg Tokyo

Mary Shaw Michael Mauldin

Stephen D. Brookes Randy Pausch
Marc Donner William L. Scherlis
James Driscoll Alfred Z. Spector

Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213
U.S.A.

(C.R.) Computer Classification: K.3

Chapter 7 is reprinted from M. Shaw and A. Ralston, “Curriculum'78—Is Computer
Science Really That Unmathematical?,” Communication of the ACM, February, 1980.
Copyright 1980, Association for Computing Machinery, Inc., reprinted by permission.

Library of Congress Cataloging in Publication Data

Main entry under title:

The Carnegie-Mellon curriculum for undergraduate computer
science.

“This curriculum and its description were developed
during the period 1981-1984 by Stephen D. Brookes. . .
et al.”

Bibliography: p.

Includes index.

1. Computers—Study and teaching. 2. Carnegie-Mellon
University. I. Shaw, Mary
QA76.27.C37 1984 001.64'07'11 84-23468

With 5 Illustrations

©1985 by Springer-Verlag New York Inc.

All rights reserved. No part of this book may be translated or reproduced in any form
without written permission from Springer-Verlag, 175 Fifth Avenue, New York, New York

10010, U.S.A.

Printed and bound by R.R. Donnelley & Sons, Harrisonburg, Virginia.
Printed in the United States of America.

987654321

ISBN 0-387-96099-6 Springer-Verlag New York Berlin Heidelberg Tokyo
ISBN 3-540-96099-6 Springer-Verlag Berlin Heidelberg New York Tokyo

The Carnegie-Mellon Curriculum
for Undergraduate Computer Science

8564620

Preface

Carnegie-Mellon has had a Computer Science Department and a PhD
degree program since 1965, but an undergraduate major leading to a
Bachelor's degree in Computer Science has never been offered.
Nevertheless, a set of undergraduate courses is taught, and the Mathematics
Department offers an option that relics heavily on these courses. Thus, an
undergraduate student who wishes to study computer science will usually
take a mathematics degree with a computer science option.

On a nurmber of occasions over the past decade, the Computer Science
Department has considered offering an undergraduate Computer Science
major. Until recently, the decision has always been negative. In the Spring
of 1981, however, the Department agreed to consider taking steps toward
offering a major. A Curriculum Design Group was formed to identify the
curriculum that would support a major. This group included Stephen
D. Brookes, Marc Donner, James Driscoll, Michazl Mauldin, Randy Pausch,
William L. Scherlis, Mary Shaw, and Alfred Z. Spector. This book presents
the result of the group’s efforts.

We decided that the first step should be a thorough review of the existing
curriculum. The content of the present courses has evolved through the
years, and a complete review has not been done in quite some time. Because
computer science is evolving rapidly, we feit that the changing nature of
computers and computing was not adequately reflected by the existing
curriculum. As a result, we decided to reconsider the entire curriculum,
including both computer science courses and courses that will probably be
offered by other departments. Our goals are described in a technical report
[104] (reprinted in [103]) and briefly reviewed in Chapter 4.

At the same time as this design was underway, Carnegie-Mellon was
developing a university-wide personal computer network. Theie was no
substantial interaction between the curriculum design and the campus
network project that was being designed concurrently, but we tried to
identify ways to take advantage of advanced computing technology as we
developed courses. In general, however, we believe that Computer Science
Departments should coordinate their plans with those of their universities,
which have a growing need to use computers in support of undergraduate
education and to develop courses that deal with computation in fields other
than computer science. We hope that by systematically including software
support requirements in course designs we can influence the development of
university computing facilities and justify software development as an
ordinary part of course development.

Acknowledgments

A curriculum necessarily spans its discipline; its designers nced ali the help
they can get. We have received a great deal. Though it is impossible to
acknowledge all of it, we want to express our appreciation to some of the
people who have affected our thinking most significantly. Thanks, then:

» To the Carnegie-Meilon Computer Science Department for support

and encouragement in this project.

» To the following people, who contributed significantly to the design of
individual courses: Jon Bentley, Ellen Borison, Jaime Carbonell, Wes
Clark, Carl Ebeling, Allan Fisher, Ed Frank, Geoff Hinton, Takeo
Kanade, Elaine Kant, Monica LLam, Dan lLeivant, Matt Mason, Dana
Scott, John Shen, Chris Stephenson, Hank Walker, Bob Wedig, and
Bill Wulf.

- To Jill Fain, Cynthia Hibbard, Allen Newell, and Steve Shafer, who
provided extensive critical comments on drafts of the proposal.

» To previous members of tisis project team, Jon Bentley and Guy Steele.
Their participation in the early stages of the design contributed
enormously to the final philosophy and structure.

» To members of the IEEE/ACM Software Engineering Planning
Group. Section 2.2 was prepared while its author was working on both
reports, and many of the ideas were developed or refined during the
discussions at the planning meeting in September 1982.

» To the participants of the Sloan Conference/Workshop on the first two
years of College Mathematics, from which the first version of our
discrete mathematics syllabus emerged.

» To Roy Ogawa and Dara Scott for helpful comments on the original
manuscript of chapter 8.

» To Betsy Grgurich, who typed, edited, and reformatted many, many
versions of the manuscript.

Table of Contents

. Introduction and Cverview

1.1. Goals of the Curriculum Design
1.2. Educational Philosophy

1.3. Character of the Curriculum

1.4. Innovations in the Curriculum

1.5. Organization of the Book

. The Nature of Computer Science

2.1. Working Definition of Computer Science
2.2. A View of Future Computing

. Roles for Universities

3.1. The Audience

3.2. Use of Computing Technology in Education
3.3. The ACM and [EEE Curricula

. Objectives for the Curriculum

4.1. Premises
4.2. Goals
. The Content of Computer Science

5.1. Basics
5.1.1. Content
5.1.2. Skills
5.2. Elementary Computer Science
5.2.1. Content
5.2.2. Modes of Thought
5.2.3. Skills
5.3. Liberal Professional Education
5.3.1. General Scope
5.3.2. Liberal Education
5.3.3. Areas Related to Computer Science
5.3.3.1. Mathematics and Statistics
5.3.3.2. Electrical Engineering
5.3.3.3. Physics
5.3.3.4. Psychology
5.3.3.5. Mechanical Engineering
5.3.3.6. Management and Information Science
5.3.3.7. Public policy
5.4. Advanced Computer Science
5.4.1. Control
5.4.2. Data

o 1 N N WO - =

5.4.3. Systems

5.4.4. Language

5.4.5. Foundations
5.4.6. Design

5.4.7. Communications
5.4.8. Applications

6. Program Organization

6.1. Requirements
6.2. Advice on the Use of Electives
6.3. Program Flexibility
6.4. Sample Program
. Curriculum ’78—Is Computer Science Really that
Unmathematical?
7.1. Curriculum *78 and Mathematics
7.2. Mathematics for Computer Scientists
. Mathematics Curriculum and the Needs c¢f Computer
Science
8.1. Some Words about Computer Science
8.2. Mathematical Aspects of Undergraduate Computer Science
8.2.1. Mathematical Modes of Thought Used by Computer
Scientists
8.2.1.1. Abstraction and Realization
8.2.1.2. Problem-solving
8.2.2. Discrete Mathematics
8.2.3. Continuous Mathematics
8.3. Some Remarks about Computer Science and Mathematics
Curricula
8.4. Conclusion

9. Theory and Practice in the Fundamental Computer

Science Course

9.1. Introduction
9.2. Course Overview
9.3. Major topics in the Fundamental Structures Course
9.3.1. Models of Computation: Automata
9.3.2. Formal Languages
9.3.3. Formal Specification and Verification
9.3.4. Algorithmic Analysis
9.3.5. Data Types
9.3.6. Recursion
9.3.7. Programming Exercises

35
35
35
35
35
36
37
37
40
41
42
45

46
48
53

53
54
55

55
57
57
58
58

59
61

61
63

65
65
66
67
67
68
69

9.4. Experiences
9.5. Conclusions
10. Remarks on the Desigyn

10.1.
10.2.
10.3.
10.4.

General Philosophy

Relation to Traditional Courses
Course Organization and Style
Course Numbering Scheme

11. Course Descriptions

11.1.

11.2.

11.3.

Basic and Introductory Courses
11.1 1. Computers in Modern Society [100]

11.1.2. Programming and Problem Solving [110]
11.1.3. Discrete Mathematics [150]

Elementary and Intermediate Computer Science Courses
11.2.1. Fundamental Structures of Computer Science 1[211]
11.2.2. Fundamental Structures of Computer Science I [212]
11.2.3. Real and Abstract Machines [240]

11.2.4. Solving Real Probleins [300]

11.2.5. Time and Resources [310]

11.2.6. Program Organizations [313]

11.2.7. Languages, Interfaces, and their Processors [320]
11.2.8. Algorithms and Programs [330]

11.2.9. Formal Languages, Automata, and Complexity [350]
11.2.10. Logic for Computer Science [351]

11.2.11. Introduction to Artificial Intelligence [360]

11.2.12. Introduction to Robotics [361]

Advanced Computer Science Courses
11.3.1. Independent Project [400]

11.3.2. Undergraduate Thesis [401]

11.3.3. Research Seminar [409]

11.3.4. Big Data [410]

11.3.5. Communications and Networks [411]

11.3.6. Software Engineering [413]

11.3.7. Software Engineering Lab [414]

11.3.8. Transducers of Programs [420]

11.3.9. Advanced Programming Languages and Compilers
[421]

11.3.10. Advanced Algorithms [430]

11.3.11. Computer Architecture [440]

11.3.12. VLSI Systems [441]

11.3.13. Theory of Programming Languages [450]

69
70
71

71
72
73
74
75

71
71
Ti
79
82
83
86
90
94
96
100
103
109
113
117
119
122
124
125
127
128
129
132
135
139
140
143

146
143
151
154

11.3.14. Complexity Theory [451] 157

11.3.15. Artificial Intelligence—Cognitive Processes [460] 159
11.3.16. Artificial Intelligence—Robotics [461] 162
11.3.17. Interactive Graphics Techniques [470] 164

12. Related Courses 167
12.1. Mathematics Couises 167
12.1.1. Introduction to Discrete Mathematics [Math 127 7 CS 167

150]

12.1.2. Calculus I [Math 121] 167
12.1.3. Calculus 11 [Math 122] 167
12.1.4. Methods of Applied Math T [Math 259] 167
12.1.5. Elements of Analysis [Math 261] 168
12.1.6. Operations Research 1 [Math 292] 168
12.1.7. Operations Research 11 [Math 293] 168
12.1.8. Combinatorial Analysis [Math 301 / CS 251] 168
12.1.9. Linear Algebra [Math 341] 168
12.1.10. Numerical Methods [Math 369 / CS 352] 168
12.1.11. Modern Algebra [Math 473 / CS 452] 169
12.1.12. Appiied Graph Theory [Math 484 / CS 430] 169

12.1.13. Numerical Mathematics 1 and II [Math 704 and 705] 169
12.1.14. Large-Scale Scientific Computing [Math 712 / CS 453] 169
12.2. Statistics Courses 169
12.2.1. Probability and Applied Statistics for Physical Science 169

and Engineering 1 [Stat 211 / CS 250]

12.2.2. Probability and Statistics I [Stat 215] 170
12.2.3. Statistical Methods for Data Analysis I [Stat 219] 170
12.3. Electrical Engineering Courses 170
12.3.1. Linear Circuits: [EE 101 / CS 241] 170
12.3.2. Electronic Circuits I [EE 102 / CS 242] 171
12.3.3. Introduction to Digital Systems [EE 133] 171
12.3.4. Linear Systems Analysis [EE 218] 171
12.3.5. Electronic Circuits IT [EE 221 / CS 340] 171
12.3.6. Anaiysis and Design of Digital Circuits [EE 222 / CS 171
341]
12.3.7. Introduction to Solid State Electronics [EE 236] 172
12.3.8. Introduction to Computer Architecture [EE 247 / CS 172
440]
12.3.9. Fundamentals of Control [EE 301] 172
12.4. Psychology Courses 173

12.4.1. Psychology of Learning and Problem Solving [Psy 113] 173

12.4.2. Information Processing Psychology and Artificial 173
Intclligence [Psy 213]

12.4.3. Human Factors [Psy 363] 173
12.4.4. Cognitive Processes and Problem Solving [Psy 411] 173
12.4.5. Thinking [Psy 417] 174
12.5. Engineering and Public Policy Courses 174
12.5.1. Law and Technology [EPP 321] 174
12.5.2. Telecommunications Policy Analysis [EPP 402] 174
12.5.3. Policy Issues in Computing [EPP 380 / CS 380] 174
12.6. Engineering Courses 175
12.6.1. Real Time Computing in the Laboratory [Engr 252] 175
12.6.2. Analysis, Synthesis and Evaluation [Engr 300] 175
12.6.3. The History and Formulation of Research and 175
Development Policy [Engr 401]
12.6.4. Cost-Benefit Analysis [Engr 404] 175

Index 187

1. Introduction and Overview

The Carnegie-Mellon Computer Science Departmenti’s Curriculum Design
Project examined the current state of computer science and computer science
curricula, projected the requircracnts for undergraduate education in
computer science over the next decade, and developed a curriculum suitable
for a computer science major. This book presents the resulting design.

For many years Carnegie-Mellon has had a computer science curriculum (a
body of courses), but it has never had a computer science major (a formal
degree program). The department has adopted the curriculum presented
here as a Casis for major reorganization of its undergraduate offerings,
though resource limitations will probably prevent a complete
implementation of the curriculum. Some reasonable subset of the
curriculum could form the basis for a computer science major. However, a
curriculum is a necessary but not a sufficient condition for a major and the
other issues, such as resource requircments, are not addressed here.

1.1. Goals of the Curriculum Design

Computer science is opening new specialties in many fields, and as a resuit
the pattern of student involvement in university computing is changing.
During the next decade, four different undergraduate populations within the
university will require distinct kinds of education about computer science.
These groups are:

» The computer scientists, students actually majoring in computer

science,

» The computing specialists, students in computational specializations

within other disciplines,

» The occasional programmers, students who will write programs for
personal use; and

» The casual users, students who will make only casual use of computers.

In this design project we took as our goal the design of a curriculum for the
first group of students: those interested primarily in computer science. We
have formulated a unified view of the discipline, identified a suitable
collection of courses, and defined the content requirement for a major. We
chose not to consider the university resources required to support such a
curriculum,

in this design, we did not address the computer science education of non-
majors, but universities should do so. This report discusses the needs of
these students and some suitable responses, but it does not go into depth.
New curricuium designs will be required for the computer specialists and the
casual users.

2 The Carncgic-Mellon Curriculum for Undergraduate Computer Science

1.2. Educational Philosophy

We set out to develop a curriculum that would support a computer science
degree of the highest quality. Such a curriculum requires a balanced blend
of fundamental conceptual material and examples drawn from the best of
current practice. In many ways, our educational philosophy is based directly
on the Carncgie Plan for education [21, 22, 32, 88], which emphasizes an
integrated understanding of basic concepts and the application of those
concepts to practical problems. We believe that a curriculum with a small
common core and a broad selection of advanced courses supports a variety of
computer science specializations including both terminal and nonterminal
programs.,

1.3. Character of the Curriculum

We have designed a computer science curriculum consistent with this
educational philosophy. The curriculum includes a unified overview of
computer science, the content requirements for a computer science major,
and detailed descriptions of a number of computer science courses. The
curriculum has interactions with offerings in other departments, but these
relations are not completely specified.

The design recognizes that computer science is a maturing field with a
growing set of increasingly comprehensive models and theories. As such, it
relies very heavily on mathematics, and it has close ties to several other
disciplines. Because the field is changing rapidly, students need fundamental
knowledge that they can adapt to new situations. In addition, students must
be able to apply their knowledge to real problems, and they must be able to
generate tasteful and cost-effective solutions to these problems. In this
curriculum, the integration of theory and practice is a theme of virtually
every course.

We have sketched outlines for thirty computer science courses. They
include seven courses in systems and design, three courseg in programming
languages, two courses in algorithms and analysis, three courses in computer
hardware systems, one course in elementary® discrete mathematics, four
courses in theory and mathematical foundations, four courses in artificial
intelligence, one course in graphics, and five independent study, project, or
seminar courses. Many of these courses are completely new, and the rest are
revised from the form in which they currently exist at Carnegie-Mellon. Asa
result, a major effort will be required to implement the individual course
designs.

In addition to the courses we define here, we have identified a number of
courses generally offered by other departments that present material relevant
to computer science. Though such material is often conceptually part of a
computer science education, we did not develop new descriptions for such
courses.

&

Introduction and Overview 3

We have also proposed requirements for a computer science major based
on this curriculum. These requirements are the basis for a liberal
professional education. The required core is small (five specific courses plus
two courses constrained to specific areas), thereby allowing a variety of
specializations within the major. Additional requirements assure breadth,
both by requiring substantial exposure to humanities. social sciences, and
fine arts and by requiring a concentration of study outside the major.

1.4. Innovations in the Curriculum

Because the design was carried out without prior commitment to course
organizations, the resulting organization is based on the structure of modern
computer science rather than on traditional course divisions. The major
innovative characteristics of the resulting curriculum include the following:

» Organization around a core. The curriculum consists of a core of
courses that present the basis of the field together with a set of more
advanced courses that provide depth of knowledge. The core courses
emphasize the mathcmatical foundations of the field in practical
settings.

» Curriculum integration. The courses are carefully integrated with each
other, and strong prerequisite relations ensure that the material will be
presented in a coherent order. Subareas often have one course that
provides a broad introduction and a sequence of courses that provide
greater depth.

» Courses designed around ideas rather than artifacts. Topics based on
common ideas often appear in a single course, even if the topics are not
traditionally taught together. This often entails rearrangement of
traditional course boundaries; it also allows integration of theory and
practice.

» Use of proper computer support. Many courses require extensive access
to computers and software to illustrate points being made in the course.
Though the forthcoming campus-wide personal computer system at
Carnegie-Mellon will aid in this, we have presented the functional
requirements for computer support rather than discussing specific ways
to use personal computers.

After developing a global view of the curriculum, we derived specific
courses. We re-derived the need for an elementary sequence much like the
one developed at Carnegie-Mellon in the late 1970's (211 and 212)1 This
provides a solid foundation for sequences of advanced courses. In many
cases, the initial course of an advanced sequence is eminently suited for a

1Numbexs in this section refer to course numbers. Syllabi for these courses appear in
Chapter 11.

4 ‘The Carncgic-Mellon Curriculum for Undergraduate Computer Science

student who wants to use the techniques of an arca without specializing in it.
The major new courses and course sequences include

> A sophomore course that provides a concrete appreciation of the
nature of computation through a unified view of hardware, software,
and theory (240).

» A reorganization of the traditional operating systems course that
integrates the hardware, software, and theoretical views of concurrency,
generalizes the resource management aspect of operating systems, deals
with complex, long-lived data and integrates hardware and software
aspects of communication (310, 410, 411).

» A new course that presents module-level program organizations and
software development techniques. This course fills a gap between the
courses that teach data structures or program fragments and the courses
that deal with constructing systems from modules (313).

» A reorganization of the traditional comparative programming
languages and compiler construction courses. The resulting courses
focus first on programming languages and user interfaces, pregresses to
the use of advanced software tools for system (especially compiler)
development, and culminate in language design and compiler
construction techniques (320, 420, 421).

»A set of courses that present algorithms and the mathematical
foundations of computer science with emphasis on integrating the
practical aspects of the material with the presentation of the theory.
The courses cover algorithms, logic, formal languages, automata,
computability, complexity, and theory of programming languages (330,
350, 351, 430, 450, 451).

» A set of artificial intelligence courses that establish parallel sequences
for the cognitive processing and robotics aspects of Al
(360,361,460,461).

In addition, we plan joint development of a course for advanced students
that establishes a basis for responsible evaluation of the consequences of
computing and for interpreting the technology to laymen (380).

1.5. Organization of the Book

The setting for this design is discussed in Chapter 2. Roles for the
university to play in the education of both majors and non-majors are
examined in Chapter 3. Our general educational philosophy is defined in
more detail in Chapter 4. Chapter 5 presents our integrated view of the
content of computer science. Chapter 6 shows how majors (Bachelor’s
degree programs) could be created from the courses of this curriculum.
Chapters 7 and 8 reprint articles on the role of mathematics in computer
science and the nature of the curriculum support that computer science needs

Infroduction and Overview

from mathematics. Chapter 9 discusses the design of the basic course,
FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE 1 AND 11 [211/212].
Chapter 10 discusses the rationale for our organization. Qutlines for the
computer science courses we propose are presented in Chapter 11. Chapter
12 lists courses from other departments that cover related material.

By EE, 75 E 5 ¥EPDFIE 1) 1) © www. ertongbook. com

