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Preface

Carnegie-Mellon has had a Computer Science Department and a PhD
degree program since 1965, but an undergraduate major leading to a
Bachelor's degree in Computer Science has never been offered.
Nevertheless, a set of undergraduate courses is taught, and the Mathematics
Department offers an option that relics heavily on these courses. Thus, an
undergraduate student who wishes to study computer science will usually
take a mathematics degree with a computer science option.

On a nurmber of occasions over the past decade, the Computer Science
Department has considered offering an undergraduate Computer Science
major. Until recently, the decision has always been negative. In the Spring
of 1981, however, the Department agreed to consider taking steps toward
offering a major. A Curriculum Design Group was formed to identify the
curriculum that would support a major. This group included Stephen
D. Brookes, Marc Donner, James Driscoll, Michazl Mauldin, Randy Pausch,
William L. Scherlis, Mary Shaw, and Alfred Z. Spector. This book presents
the result of the group’s efforts.

We decided that the first step should be a thorough review of the existing
curriculum. The content of the present courses has evolved through the
years, and a complete review has not been done in quite some time. Because
computer science is evolving rapidly, we feit that the changing nature of
computers and computing was not adequately reflected by the existing
curriculum. As a result, we decided to reconsider the entire curriculum,
including both computer science courses and courses that will probably be
offered by other departments. Our goals are described in a technical report
[104] (reprinted in [103]) and briefly reviewed in Chapter 4.

At the same time as this design was underway, Carnegie-Mellon was
developing a university-wide personal computer network. Theie was no
substantial interaction between the curriculum design and the campus
network project that was being designed concurrently, but we tried to
identify ways to take advantage of advanced computing technology as we
developed courses. In general, however, we believe that Computer Science
Departments should coordinate their plans with those of their universities,
which have a growing need to use computers in support of undergraduate
education and to develop courses that deal with computation in fields other
than computer science. We hope that by systematically including software
support requirements in course designs we can influence the development of
university computing facilities and justify software development as an
ordinary part of course development.
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1. Introduction and Overview

The Carnegie-Mellon Computer Science Departmenti’s Curriculum Design
Project examined the current state of computer science and computer science
curricula, projected the requircracnts for undergraduate education in
computer science over the next decade, and developed a curriculum suitable
for a computer science major. This book presents the resulting design.

For many years Carnegie-Mellon has had a computer science curriculum (a
body of courses), but it has never had a computer science major (a formal
degree program). The department has adopted the curriculum presented
here as a Casis for major reorganization of its undergraduate offerings,
though resource limitations will probably prevent a complete
implementation of the curriculum.  Some reasonable subset of the
curriculum could form the basis for a computer science major. However, a
curriculum is a necessary but not a sufficient condition for a major and the
other issues, such as resource requircments, are not addressed here.

1.1. Goals of the Curriculum Design

Computer science is opening new specialties in many fields, and as a resuit
the pattern of student involvement in university computing is changing.
During the next decade, four different undergraduate populations within the
university will require distinct kinds of education about computer science.
These groups are:

» The computer scientists, students actually majoring in computer

science,

» The computing specialists, students in computational specializations

within other disciplines,

» The occasional programmers, students who will write programs for
personal use; and

» The casual users, students who will make only casual use of computers.

In this design project we took as our goal the design of a curriculum for the
first group of students: those interested primarily in computer science. We
have formulated a unified view of the discipline, identified a suitable
collection of courses, and defined the content requirement for a major. We
chose not to consider the university resources required to support such a
curriculum,

in this design, we did not address the computer science education of non-
majors, but universities should do so. This report discusses the needs of
these students and some suitable responses, but it does not go into depth.
New curricuium designs will be required for the computer specialists and the
casual users.
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1.2. Educational Philosophy

We set out to develop a curriculum that would support a computer science
degree of the highest quality. Such a curriculum requires a balanced blend
of fundamental conceptual material and examples drawn from the best of
current practice. In many ways, our educational philosophy is based directly
on the Carncgie Plan for education [21, 22, 32, 88], which emphasizes an
integrated understanding of basic concepts and the application of those
concepts to practical problems. We believe that a curriculum with a small
common core and a broad selection of advanced courses supports a variety of
computer science specializations including both terminal and nonterminal
programs.,

1.3. Character of the Curriculum

We have designed a computer science curriculum consistent with this
educational philosophy. The curriculum includes a unified overview of
computer science, the content requirements for a computer science major,
and detailed descriptions of a number of computer science courses. The
curriculum has interactions with offerings in other departments, but these
relations are not completely specified.

The design recognizes that computer science is a maturing field with a
growing set of increasingly comprehensive models and theories. As such, it
relies very heavily on mathematics, and it has close ties to several other
disciplines. Because the field is changing rapidly, students need fundamental
knowledge that they can adapt to new situations. In addition, students must
be able to apply their knowledge to real problems, and they must be able to
generate tasteful and cost-effective solutions to these problems. In this
curriculum, the integration of theory and practice is a theme of virtually
every course.

We have sketched outlines for thirty computer science courses. They
include seven courses in systems and design, three courseg in programming
languages, two courses in algorithms and analysis, three courses in computer
hardware systems, one course in elementary® discrete mathematics, four
courses in theory and mathematical foundations, four courses in artificial
intelligence, one course in graphics, and five independent study, project, or
seminar courses. Many of these courses are completely new, and the rest are
revised from the form in which they currently exist at Carnegie-Mellon. Asa
result, a major effort will be required to implement the individual course
designs.

In addition to the courses we define here, we have identified a number of
courses generally offered by other departments that present material relevant
to computer science. Though such material is often conceptually part of a
computer science education, we did not develop new descriptions for such
courses.
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We have also proposed requirements for a computer science major based
on this curriculum. These requirements are the basis for a liberal
professional education. The required core is small (five specific courses plus
two courses constrained to specific areas), thereby allowing a variety of
specializations within the major. Additional requirements assure breadth,
both by requiring substantial exposure to humanities. social sciences, and
fine arts and by requiring a concentration of study outside the major.

1.4. Innovations in the Curriculum

Because the design was carried out without prior commitment to course
organizations, the resulting organization is based on the structure of modern
computer science rather than on traditional course divisions. The major
innovative characteristics of the resulting curriculum include the following:

» Organization around a core. The curriculum consists of a core of
courses that present the basis of the field together with a set of more
advanced courses that provide depth of knowledge. The core courses
emphasize the mathcmatical foundations of the field in practical
settings.

» Curriculum integration. The courses are carefully integrated with each
other, and strong prerequisite relations ensure that the material will be
presented in a coherent order. Subareas often have one course that
provides a broad introduction and a sequence of courses that provide
greater depth.

» Courses designed around ideas rather than artifacts. Topics based on
common ideas often appear in a single course, even if the topics are not
traditionally taught together. This often entails rearrangement of
traditional course boundaries; it also allows integration of theory and
practice.

» Use of proper computer support. Many courses require extensive access
to computers and software to illustrate points being made in the course.
Though the forthcoming campus-wide personal computer system at
Carnegie-Mellon will aid in this, we have presented the functional
requirements for computer support rather than discussing specific ways
to use personal computers.

After developing a global view of the curriculum, we derived specific
courses. We re-derived the need for an elementary sequence much like the
one developed at Carnegie-Mellon in the late 1970's (211 and 212)1 This
provides a solid foundation for sequences of advanced courses. In many
cases, the initial course of an advanced sequence is eminently suited for a

1Numbexs in this section refer to course numbers. Syllabi for these courses appear in
Chapter 11.
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student who wants to use the techniques of an arca without specializing in it.
The major new courses and course sequences include

> A sophomore course that provides a concrete appreciation of the
nature of computation through a unified view of hardware, software,
and theory (240).

» A reorganization of the traditional operating systems course that
integrates the hardware, software, and theoretical views of concurrency,
generalizes the resource management aspect of operating systems, deals
with complex, long-lived data and integrates hardware and software
aspects of communication (310, 410, 411).

» A new course that presents module-level program organizations and
software development techniques. This course fills a gap between the
courses that teach data structures or program fragments and the courses
that deal with constructing systems from modules (313).

» A reorganization of the traditional comparative programming
languages and compiler construction courses. The resulting courses
focus first on programming languages and user interfaces, pregresses to
the use of advanced software tools for system (especially compiler)
development, and culminate in language design and compiler
construction techniques (320, 420, 421).

»A set of courses that present algorithms and the mathematical
foundations of computer science with emphasis on integrating the
practical aspects of the material with the presentation of the theory.
The courses cover algorithms, logic, formal languages, automata,
computability, complexity, and theory of programming languages (330,
350, 351, 430, 450, 451).

» A set of artificial intelligence courses that establish parallel sequences
for the cognitive processing and robotics aspects of Al
(360,361,460,461).

In addition, we plan joint development of a course for advanced students
that establishes a basis for responsible evaluation of the consequences of
computing and for interpreting the technology to laymen (380).

1.5. Organization of the Book

The setting for this design is discussed in Chapter 2. Roles for the
university to play in the education of both majors and non-majors are
examined in Chapter 3. Our general educational philosophy is defined in
more detail in Chapter 4. Chapter 5 presents our integrated view of the
content of computer science. Chapter 6 shows how majors (Bachelor’s
degree programs) could be created from the courses of this curriculum.
Chapters 7 and 8 reprint articles on the role of mathematics in computer
science and the nature of the curriculum support that computer science needs
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from mathematics. Chapter 9 discusses the design of the basic course,
FUNDAMENTAL STRUCTURES OF COMPUTER SCIENCE 1 AND 11 [211/212].
Chapter 10 discusses the rationale for our organization. Qutlines for the
computer science courses we propose are presented in Chapter 11. Chapter
12 lists courses from other departments that cover related material.
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