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Foreword

In 1974 SIMS initiated a series of five-day Research Application
Conferences (RAC's) at Alta, Utah, for the purpose of probing in depth
societal fields in light of their receptivity to mathematical and
statistical analysis. The first nine conferences addressed ecosystems,
epidemiology, energy, environmental health, time series and ecological
processes, energy and health, energy conversion and fluid mechanics,
environmental epidemiology: risk assessment, and atomic bomb survivor
data: utilization and analysis.

These Proceedings are a result of the tenth conference "Modern
Statistical Methods in Chronic Disease Epidemiology' which was held in
1985. Forty speakers and observers contributed their expertise in
such disciplines as biometry, environmental medicine, epidemiology,
genetics, mathematics, and statistics. Topics addressed were: issues
in matching and covariate adjustment, choice of primary time variate
and evolutionary covariates, design and analysis of prevention trials,
problems involving auxiliary and incomplete covariate data, confidence
region and model criticism, absolute and relative risk methods, methods
in genetic epidemiology, models for carcinogenesis and cancer pro-
gression, and multivariate failure time methods.

Suresh H. Moolgavkar and Ross L. Prentice, both of the Fred
Hutchinson Cancer Research Center (Seattle) and the University of
Washington (Seattle) co-chaired the Conference. Donald R. Snow of
Brigham Young University served as Assistant Conference Director.

The Conference was supported by the Department of Energy, Human

Health and Assessments Division, Office of Health and Environmental
Research, Office of Energy Research.

D.L. Thomsen, Jr.
President

August 1985



Preface

The last quarter century, since the publication of Mantel and
Haenszel's pioneering paper in 1959, has seen a veritable explosion
of statistical methodology in chronic disease epidemiology. The central
methodologic issues revolve around envirommental and genetic risk
assessment, and risk extrapolation. The tenth Research Apvnlication
Conference held under the auspices of SIMS brought together exnerts
from around the world to discuss the theory and apoplications of
statistical methods in chronic disease epideniology. This volume
represents the proceedings of that conference.

Relative risk regression models provide flexible and powerful tools
for the analysis of epidemiologic data. These models have been the
objects of intense study in the past several years, and it seems
reasonable to predict that relative risk regression methods will
become a, or perhaps, the, central analytical tool in chronic disease
epidemiology. Thus, a major emphasis of the conference was on relative
risk regression, and various papers in this volume deal with time-
dependent covariates, new study designs, multivariate failure time
data, methods of model criticism, parameter transformations for optimal
inference, and issues in matching, covariate adjustment, and incomplete
and missing covariate information:

The relative risk regression models in current use are generali-
zations of a semi-parametric model for survival data analysis proposed
by Cox in 1972. 1In the original model of Cox, the relative risk
function was exp(Btz), where B is a vector of parameters and z is a
vector of covariates. Estimation of B vproceeds via maximization of a
partial likelihood. The original model has been generalized in two
main directions. First, relative risk functions other than the
exponential are being increasingly used. Second, the covariates are
allowed to evolve over time. The large sample properties of such
generalized models are now fairly well understood and elegant proofs
using martingale theory are avaiable. ‘

Nevertheless, the use of time-dependent covariates raises some
technical problems. An approach to some of these is described in the
paper by Andersen. The use of relative risk functions other than the
exponential leads to problems in small to moderate sized samples. The
use of parameter transformations to alleviate some of these problems
is considered in the paper by Moolgavkar and Venzon.

Epidemiologic studies are largely observational in nature, and
particular care needs to be exerciséd in their design. Often, the
cost of processing information on a large number of study subjects
is an important consideration. The issues arising in various designs
for cohort studies are discussed in the paper by Prentice et al. A
consequence of the observational nature of epnidemioclogic studies is
that covariate information is sometimes missing and often measured
with error. The impact and accommodation of covariates that are

xi



xii PREFACE

measured with error are discussed in the paper by Whittemore and
Grosser. The impact, on various aspects of the data analysis, of the
complete omission of certain 'balanced' covariates.is discussed by
Gail. Careful selection of controls is of crucial importance in
epidemiologic studies. Often controls with the appropriate character-
istics are difficult to find. Partial matching is discussed in the
paper by Greenland.

There has recently been interest in the analysis of failure time
data in which the response in subgroups of individuals may be corre-
lated. This situation may arise, for example, in twin studies. The
papers by Oakes and by Self and Prentice discuss the issues that arise
in multivariate failure time data.

An important area of research is the development of methods of
model criticism for the relative risk regression models used for the
analysis of epidemiologic studies. While much work still remains to
be done, some approaches are discussed in the papers by Lustbader and
Davis et al.

Often, .time measurements other than elapsed time on study, may
be of importance in the analysis of cohort data. A "real time"
approach to the analysis of cohort data, which does not require the
rezeroing of time as subjects enter the cohort, is advocated in the
paper by Arjas. Finally, papers by Breslow and Thomas discuss the
fitting of certain non-standard relative and absolute risk models to
epidemiologic data.

It is becoming increasingly clear that most chronic diseases are
a complex interplay of heredity and environment. Genetic epidemiol-
ogists have devised powerful and flexible statistical tools for the
analysis of pedigree and linkage data. Unfortunately, there is a
paucity of dialogue between scientists whose primary interest is
the environment and those whose primary interest is heredity. Such
a dialogue could only benefit both groups. Papers on pedigree and
path analysis by Elston and Rice, respectively, are valuable contri-
butions to such interchange.

Often, the risk to human populations from exposures-to low levels
of various agents must be inferred from the results of experiments in
which animals have been exposed to very high levels of the agent in
question. Various statistical methods have been devised for such "low-
dose extrapolation", and at least some of these methods are based on
biologically derived models. A satisfactory solution to the extra-
polation problem is not presently at hand. However, the paper by
Krewski et al addresses the issue and describes some models currently
in use.

Finally, in some cancers, early detection appears to improve
prognosis. For example, screening for cervical cancer is now wide-
spread. The statistical issues involved in large scale screening
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programs are the subject of the paper by Day and Walters.

The conference was characterized by excellent presentations and
stimulating discussions. We feel that this collection of papers
represents a timely and provocative discourse on some of the central
statistical issues in chronic disease epidemiology.

Suresh K. Moolgavkar
Ross L. Prentice

Seattle, 1985
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SECTION 1
Aspects of the Validity and of the Design of Epidemiologic Studies

A central issue in the interpretation of observational studies
concerns the possible omission of important explanatory factors or
covariates. Mitchell Gail considers the omission of a covariate that,
by design, is not associated with the primary exposure variable in a
cohort setting. His paper demonstrates that, except in certain special
cases, such omission can be expected to bias parameter estimates that
relate exposure level to disease occurrence. Even if such bias does
not occur, standard tests of the absence of exposure effect may well
be invalid.

Alice Whittemore and Stella Grosser consider problems that arise
when the exposure variables of interest are measured inaccurately.
This is a topic of obvious importance in observational studies, and
one that has received limited attention in the context of odds ratio
or relative risk methods that are commonly used in epidemiologic
research. One wonders, for example, the extent to which an apparent
lack of consistency of results relating intake levels of selected
nutrients to the incidence of major chronic diseases may be attributed
by important and highly correlated measurement errors among the
estimated nutrient intakes. Whittemore and Grosser provide a quite
general approach to the use of information on the covariate error
distribution into regression analysis, along with several illustrations.

Literature on the role of matching in case-control studies is
quite extensive. Issues of practicality and ease of conduct may
compete with those of simplicity and efficiency of data analysis. The
paper by Sander Greenland notes that much of the benefit of a fully
matched, but possibly awkward, design can be retained by certain
logistically advantageous 'partially matched' designs.

The time-matched case-control design has been advocated by a
number of authors for relative risk regression in the context of a
large cohort study. Possible 'case-control within cohort' designs
are described in the paper by Prentice, Self and Mason, as is a case-
cohort design. This latter design appears to have some efficiency
advantages relative to corresponding case-control designs and is
particularly useful in situations (e.g., large scale prevention trials)
where it is useful to be able to identify the 'comparison group’' prior
to cohort follow-up.







Adjusting for Covariates That Have the Same Distribution in
Exposed and Unexposed Cohorts

Mitchell H. Gail*

Abstract. We ‘examine the effects of omitting a balanced covariate,
namely a covariate, X, that has the same distribution among exposed
and unexposed subjects, from regression analyses of cohort data.
Except for models with linear or multiplicative regressions of the
response variable on exposure and X, omission of a balanced covari-
ate yields biased estimates of treatment effect. Moréover, even in
cases where bias is not introduced, omitting X can lead to hypothe-
sis tests for no exposure effect that have supranominal size, if
the Fisher information is used to estimate required variances. A
robust .variance estimate is recommended, instead, which leads to
tests of nominal size, but omitting X can still lead to substantial
power loss. These ideas are discussed in relation to the following
models (Table 1) for epidemiological cohort studies: normal lin-
ear, exponential multiplicative, exponential reciprocal, Bernoulli
logistic, Bernoulli additive, Bernoulli multiplicative, Poisson
multiplicative, Cox model, and the proportional hazards model for
paired survival data.

INTRODUCT ION

The ready availability of computing facilities allows epidemi~
ologists to perform a variety of linear and non-linear regression
analyses in order to estimate the effects of exposure, to detect
effect modification, and to adjust for potential confounding vari-
ables [3,5,17,20,23,31)}. Which potential confounders or effect
modifiers to include in a regression model is problematic, and
this issue is a topic of continuing research and discucsion [8,
10,22]. We shall consider the implications of discarding a covariate
X that has the same distribution in the exposed and unexposed cohorts.

Recent publications show that estimates of treatment effect may
or may not be changed by ignoring such a covariate, depending on
the nature of the response measurement. For example, if the dis-

*Mitchell H. Gail, National Cancer Institute, Bethesda, Maryland
20892
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tribution of X is the same in each of two exposure cohorts, a
"valid" (i.e., asymptotically unbiased) estimate of relative risk
may be obtained without adjustment on X, whereas adjustment on X is
required to obtain a '"valid'" estimate of the odds- ratio of disease
[2,15,28]. The purpose of this paper is to describe more generally
what happens to inference about exposure when a balanced covariate
is omitted from the model.

The emphasis will be on cohort designs, which permit one to
study a wide variety of possible response measures, rather than on
case-control designs, which typically yield only the relative
odds. The prospective risk models we use apply directly to cohort
data, and much of the required theory has already been developed
for randomized clinical trials in which the distribution of X is
known to be independent of treatment, T [12,13].

In a cohort study we assume that the response variable, Y, for
an individual with exposure T and covariate X, has a conditional
density f(Y]T,X). The likelihood is the product of such densities
over all study participants. Clearly, no aspect of the inference
on exposure will be altered by omitting X if f(YlT,X)=f(Y|T), name-—
ly if Y is conditionally independent of X, given T. We call this
requirement NCl1 (non-confounding specification 1). This is the.
strongest requirement for X to be a non-confounder. It is equiva-
lent to model in Samuels [26], who considers dichotomous re-—
sponses. Other less stringent criteria of non-confounding may be
utilized. For example, suppose f(YIT,X) is normal with conditional
expectation E(YlT,X)*u*Ta+XB and conditional variance oZ. Then, if
B#0, NCl does not hold. Yet if X and T are independent, stan-
dard results in linear regression analysis show that estimates a*
of a® in the false model with X omitted, namely E(YlT,X)=u*+Ta*,
will converge to the true treatment effect, a, for large samples.
In epidemiological parlance, the estimate &* is '"valid". We
define non-confounder criterion NC2 to be the condition that esti-
mates of the treatment effect with X omitted corverge to the trué
treatment effect o, and we apply this notion to a variety of response
models. Yet another possible definition of non-confounder, NC3, is
the condition that model-based score tests for no treatment effect
retain nominal size when X is omitted. For most models this is not so,
though the problem can be circumvented by replacing the Fisher infor-
mation with a tobust estimate of the variance of the score. Clearly
NCl implies both NC2 and NC3. However, we shall discuss models that
satisfy NC2 but neither NCl nor NC3, and models, like the logistic,
that satisfy NC3 but neither NC1 nor NC2.

There are several epidemiological settings in which the covariate
X and exposure indicator T might be statistically independent, or at
least uncorrelated. The unexposed cohort (T=-1) might be chosen to
have the same distribution of X as the exposed cohort (T=1). This
could be accomplished by pair matching exposed and unexposed. individ-
uals on X or by randomly sampling unexposed individuals whose X values
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fall into various categories with probabilities defined by the con-
ditional density f(X[T=1). This latter procedure is called 'frequency
matching" [29]. Recently, Rosenbaum and Rubin [24,25] defined the
"propensity score', e(§)§P(T=1[X), where X includes all possible
covariates, and they showed that any component of X, such as X, is
conditionally independent of T given e(X). Thus within strata defined
by e(X), X and T are independent. Our results might also be of
interest to the data analyst who has just compared the distributions
of a number of covariates in the exposed and unexposed groups and

has identified several covariates that are uncorrelated with T. Less
commonly, an epidemiologist might have access to data from a randomiz-
ed experiment. For example, Boice et al [1] studied the long term
risk of leukemia in patients who had previously been randomly assigned
to receive the alkylating agent, Semustine, for treatment of gastro-
-intestinal cancer. The exposure to Semustine had been assigned at
random, guaranteeing the independente of T and X. We shall use the
phrases "X is independent of T" and "X is a balanced covariate'" inter-
changeably.” Although the results we present on bias and the NC2
criterion hold in each of these settings, our comments on hypothesis
testing, power, ''variance deflation" and the NC3 criterion pertain
only to the last three situations, where it is reasonable to suppose
that individuals are selected by simple random sampling from a defined
population. As emphasized by Weinberg [29], frequency matching and
pair matching induce variances that correspond to stratified random
sampling, for which our results on the NC3 criterion are not directly
applicable.

RISK MODELS AND A SUMMARY OF RESULTS FOR BALANCED COVARIATES

We imagine two cohorts of individuals, one unexposed (T=-1) and one
exposed (T=1). For simplicity we assume equal numbers in each cohort.
We observe an individual in exposure group T with covariate X and
subsequently measure his response Y. The response Y may be a quanti-
tative measurement like blood pressure, or a categorical event, like
whether or not he survived a fixed time interval. We suppose that
the expectation of Y depends on T and X according to the regression
model P

E(Y|T,X) = h(u+Ta+XB) (2.1)

where h is a twice differentiable function. We assume that X is a

scalar covariate, independent of T. Without loss of generality, we
center X so that E(T)=E(X)=0. The response Y is assumed to depend

on T and X only through the argument

n = u+Ta+XR . (2.2)

Equation (2.1) defines what is meant by 'treatment effect'", a. Note
that this model does not include an interaction term for effect
modification. Thus each subject has the same treatment effect,
regardless of X. Model (2.1) is oversimplified in one important re-
spect; it ignores the possible influence of other covariates X that
may or may not be independent of T. As Fisher and Patil [10] demon-
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strate, confounders should be evaluated jointly, but to do so requires
specification of joint probability distributions and is beyond the
scope of this paper. However, it is straightforward to extend results
on a scalar X to a vector of covariates, all of which are independent
of T [12,13].

We shall concentrate primarily on members of the exponential
family

£(Y|T,X31,0,B)=£ (Y| n)=exp {R(#) [Ty (M-g{y (M) }+ (D ]+ v(¥,HH} (2.3)

where yv(n) is the "natural parameter' linking X and T to Y,
g' {y(m)} =E(XIT,X) =h(n), and K(P) is a positive scale factor that
usually equals 1.0 in our models.

Some commonly used models are listed in Table 1. All but the Cox
and paired survival models, which are defined in the next section,
fall within the framework outlined at (2.3). In the next section,
we shall discuss each of the models in Table 1 in relation to the
following general results, most of which are taken from Gail, Wieand
and Piantadosi [12] and from Gail, Tan and Piantadosi [13].

TABLE 1

Some Models Used in Epidemiological Cohort Studies+

Yy h(y) Asymptotic Variance
Bias Deflation
Normal Linear n - n 0 yes
Uncensored Exponential ~ell e 0 yes
Multiplicative
: - *
Uncensored Exponential -n n ! lo]<la| yes
Reciprocal
n n,-1 *
Bernoulli Logistic n e (l+e ) fo" | <ol no
Bernoulli Additive log{n/(1-n)} n 0 no
Bernoulli log{en/(l—en)} e 0 no
Multiplicative
Poisson Multiplicative n en ) yes
* *
Cox Model - - | [<|af no
* *
Paired Survival - - o |<]al no

%The scale factor K(@) equals one in all these models except the
normal, for which {R(®)}~ 1 =02, the condltlonal variance. The term
"bias" describes whether the estimate, 8%, with X omitted converges
to the true treatment effect, a.

*The theory requires some modification because conditional or partial
likelihoods are used.
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We estimate the treatment effect o under the correct model,
n=p+To+XB, and under the false model, N —u*+Ta with X omitred. We
shall be interested in the relationship in large samples between

"estimates" & and 8%, and the quantities o and a*, respectively. We
say &* is a "valid" estimate if it is asymptotically unbiased, name-
ly a*=0. The estimators & and. 0¥ are maximum likelihood estimates
for models like (2.3) or maximum comditional or partial likelihood
estlmates for paired survival data or the Cox model. The condition
that 3* be "valid" is equivalent to the non-confounding specifications,
NC2. The main results on bias, for independent X and T, are summariz-
ed as follows: -

1. 1If a=0, then a*=0, no matter what model is used.

2. Condition NC2 holds for uncenscred data if and only if
h(n)=n or h(n)=exp(n). In other words, only additive and
multiplicative regression models yield valid estimates 0¥
when X is omitted.

3. For the family (2.3), the approximate asymptotic bias is
given By
a*-a =, (@& (0"t /0 Gute)=h" (u-c) /" (=)} (2.4)
where Q=8 var(X).

4. For randomly censored survival data with hazard proportional
to exp(n), parametric models with known nuisance hazards
yield conservative estimates, [a*‘<[a{, as does the Cox
partial likelihood analysis.

We now consider hypothesis testing. Under the complete model,
the one-sided score test for a=0 is

U(DG)—1/2>C .
I Ty (A {v-b(i )Y (2.5)

where 1)

¥

Ry @pn @A)

summations are over the n subjects under study, and ﬁo=ﬁo+X§O is the
maximum likelihood estimate of n under the hypothesis a=0. The
variance estimate V is n~! times the observed information calculated
from the second derivative of the log-likelihood.

Under the false model with X omitted, (2.5) is replaced by
. U @712 (2.6)
where n -u . As dlscussed in [13], the model-based variance estimate
'{nK(ﬁ)} -1 1y (n )h! (n ) is 1ncons1stent, and asymptotically it

-1/2
differs from the true variance of U n / by a 'variance deflation
factor", k#1. Thus, omitting X may lead to an anLlconservatlve
31gn1f1cance test if the model based variance estimate V*



