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Preface

The subject which started as operations research’ during the last
World War in the early forties has been growing theoretically and
also in its applications to a variety of problems in diverse fields,
suchas, engineering, management and economics. In its more
comprehensive sense which includes survey and data collection,
mathematical modelling, solutions of large mathematical problems
and improvements through feedback of results, the subject has come
to be known as systems analysis. The mathematical contents of
this subject concerned with optimization of objectives may be grouped
more expressively under optimization methods which form the
subject matter of this volume.

This book is an elementary mathematical introduction to linear
and nonlinear programming, dynamic programming, geometric
programming, direct search methods and theory of games. It has
grown out of lectures given to M.Sc. and M.E. classes and to short-
term courses under the Refresher Courses Department and the
Quality Improvement Programme at the University of Roorkee
during the last six years. Only deterministic problems have been
dealt with. Stochastic problems have not been touched. The book
is intended to serve as a suitable text for students of mathematics,
operations research, engineering, economics or management whose
courses of study include some or all of the topics treated here. Most
of the chapters can be studied independently of each other. A
knowledge of algebra (including matrices), calculus and geometry
as is usually given in the B.Sc. and the B.E. courses in India is
assumed. Chapters I and II provide the additional necessary topics
in mathematics. Convex sets have been treated in some detail as
they are not included in the usual mathematics courses given to our
students but are fundamental to the theory of mathematical pro-
gramming.

Bibliography at the end lists a number of books, mostly recent,
on the various topics discussed in this volume. A short biblio-
graphical note at the end of each chapter is meant to guide the reader
to a few standard books which he may profitably consult either
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along with the present book or subsequently for more advanced
study. No references are made to research papers, as it is seldom
profitable for students to go direct to them without acquiring a
working knowledge of the established concepts. A short historical
note at the end of some of the chapters is meant to acquaint the
student with the pioneer workers in the field. For original research
papers and credits, books listed in the bibliography can be usefully
consulted.

In their application to real life, problems in systems analysis and
operations research usually involve large number of variables,
parameters, equations and constraints. The problems generally
involve too much numerical work which can be handled only by the
digital computer. For this reason the methods of solution are
computer oriented. The criterion of suitability of a metbod is often
the economy and efficiency with which it can be programmed on
the computer. In this book we are not concerned with computer
programming. The illustrative examples in the text and also the
problems at the end of each chapter are small enough to be solved
by hand and may not apparently justify the methods recommended
to solve them. But the student should not lose sight of the fact that
the problems are only illustrative and the thethods are really designed
for large problems of the same type.

It is my pleasant duty to acknowledge gratefully the generous
help I have received from many colleagues and friends in the pre-
paration of this book. I am particularly grateful to Professor
C. Prasad, Dr.. O.P. Varshney and Dr. A.P. Gupta for their assistance
in chapters I, II and VI;to Dr. U.S. Gupta for chapter III; to Dr.
C. Mohan for chapters VIII and X; to Dr. R.K. Gupta for chapter
IX; and to Dr. Bal Krishna for critically reading through chapter I.
It is a truism that a teacher learns through his students. I am
thankful to all my students of M.Sc. and M.E. classes and all those
participants of special short-term courses who have attended my
lectures over the last many years. Without their knowing it, they
taught me a great deal and have contributed in some measure to the
writing of this book.

K. V. MiTAL

Roorkee
June 26, 1976
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I/ Mathematical
Preliminaries

EUCLIDEAN SPACE

1 Vectors and vector spaces

A mathematical model of a system may contain n variables
Xy» X35. .5 Xn, €ach of which may vary within a subset of real
numbers R. A collection of n real numbers, taken in order, such that
the first number is the value of x,, the second of x,, and soon,is
called an ordered n-tuple of real numbers. We may denote an ordered
n-tuple by a single symbol X, so that

X=(X1s. X5+ » o9 Xn)s
and a set of such n-tuples by R, so that
Ro={X|X=(xy, Xp,. ..o Xn)}

In order to deal with suchsets it is convenient to establish an ana-
logy with geometrical concepts which are easy to visualize. We
therefore assume that X and R, satisfy certain postulates which are
generalizations of notions familiar in two- and three-dimensional
geometry, and then call X a vector and R, a vector space. We start
with general definitions of vector and vector space.

DEFINITION 1. Let V be a set such that if X,Y, ZEV and a,bER,
then the following postulates (defining the binary operation of sum and
the operation of product with a real number) hold. '
Sum:
() X+YEV;
(i) X+Y=Y+X;
(i) X+Y)+Z=X+(Y+Z);
(iv) There exists an element OV, called the null or zero vector,
such that X4+0=X;
(V) There exists an element —X€E V, called the additive inverse of X,
such that X+(—X)=0;
Product:
(vi) aXev;
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i) a(X+Y)=aX+aY;
(viii) (a+b) X=aX+}bX;
(ix) (ab) X=a (bX);
x) 1X=X. :
Then V is called a vector space and its elements are called vectors.
Throughout this chapter ¥ shall denote a vector space.

Example: Lct V' be a set of all polynomials in x of degree n or less.

V={fi(*), fo(x)s- - ., fi (x)5. ..}
where filx)=Y aij x/, ai;ER.

j=1
If the two operations be the usual operations of sum and product by
areal number, then it can be verified that the postulates (i) to (x)

hold, and so ¥V is a vector space. The additive inverse of fi(x) and
the zero vector can be easily identified.

Example: Let X=(x;, X,, ..., X,) be an ordered n-tuple of real
numbers and R, be the set of all such n-tuples. If we define the sum
of two n-tuples as
X+Y=(X1, Xase ey x")+(y19 Yaseees yn)
=(X1+Y1s Xg+Vas+ « o» XntYn),
and the product with a real number a as
aX=(ax,, ax,,..., axy),

then it can be verified that R, is a vector space. The zero vector of
the space is (0,0,..., 0).

In matrix operations it is convenient to regard X as a column

vector:
X3

x
X= ;’ =[%; Xg0 ¢ « Xn]"
Xn

Its transpose X' is a row vector. To indicate that X has n components
it is customary to call X an n-vector.

DEFINITION 2. A subset W of V is called a subspace of the vector
space V if W is itself a vector space with respect to the operations of
sum and product defined in V.

Example: Let WCR, (of last example) such that W={X|X =
(%1,0,X3. .., Xo)}. Then W is a subspace of R,. For,ifX, YEW,
X+Y=(x;+y1, 0, X3+¥3,- . -, Xa+Va) EW, \
aX=(ax,,0, ax;,...,ax,)EW,k aER,
and similarly all other postulates can be seen to hold.
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2 Linear dependence

DErINITION 3. Let Xi, 1<i<m, be vectors of V. Then X is called
a linear combination of the vectors X; if

m
X= z a‘X‘, aQER.

i=1

THEOREM 1. The set W of all linear combinations of X, 1< i<m, of
vector space V is a subspace of V.
m m

Proof. LetX=> aXi, Y= b;X; sothatX, YEW. Then

i=1 i=1

X4+Y= z (a,-+b,)X,~€W,

i=1

AX= (A@)X;EW, AER.

i=1
It follows (see problem 1) that W is a vector space and hence a sub-
space of V. Proved.

W is said to be spanned by (or a span of) X.

DEefFINITION 4. The vectors X;, 1<i<<m, of V are said to be linearly
dependent if there exist real numbers a;, not all zero, such that

m
Z a; X;=0.
jml
If, however, this is so only if @;=0 for all i, then the vectors are said
to be linearly independent.

Example: LetX;=[2 —132),X,=[122 —4]',X,=[437 —6]'. Since
X,+2X,—X,;=0, the vectors are linearly dependent. But X, and X,
are linearly independent. So are X,, X,.

To test whether the n-vectors X;, 1<i<m, are linearly independent
or not, one has to examine the equations

m
Z a; Xl =0’
i=1
or putting X; as [X;; Xpi. . . Xni]’,
;% +a%5+ . o . +Amxym=0,
1%y +8sX5e+ . . . +AmXgm=0,
3 Xny+AyXno+ . . . FAmXnm=0,
and investigate whether values of g;, not all zero, exist which satisfy
these equations, or in other words, whether the n equations in m
unknowns a; have a nontrivial solution. (A solution a;=0 for all i is
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called a trivial solution.) We shall discuss the solution of such equa-
tions later in this chapter.

3 Dimension of a vector space, basis

'DEFINITION 5. Vis said to be of dimension m if there exists at least
one set of m linearly independent vectors in V, while every set of m—+1
vectors in V is linearly dependent. The linearly independent set is called
a basis of V.

THEOREM 2. A set of m linearly independent vectors in a vector space
V of dimension m spans V.

Proof. Let Y;, 1<i<m, be m linearly independent vectors in ¥, and
let X be any vectorin V. Since V is of dimension m, the m-1 vectors
X, Y; must be linearly dependent. Hence

aox+ z a; Yl'=0’
i=1 2
where a,#0. For, a,=0 will imply that Y;, 1<i<m, are linearly
dependent vectors which, by hypothesis, they are not. It follows
that

m
X=—3 (ailay) Y;
i=1
which means that X is a linear combination of Y;. Since X is any
vector in ¥V the theorem is proved.

It can be seen that the set of linearly independent vectors spanning
avector space is not unique. Consequently the basis of a vector
space is also not unique. But once the basis is chosen every vector
of the vector space has a unique linear combination expression in
terms of the chosen basis.

4 Euclidean space

DErFINITION 6. The inner product (X, Y) of any two vectorsX and Y
of V is a real number satisfying the following properties.

() <X YO=Y,X>;

(i) X+Z D= Y)4+<Z,Y), ZcV;

(i) <aX,Yy=acX,Y), a€R;

(iv) <XX>>0if X#0, X, X>=0 if X=0.
Two nonzero vectors are said to be orthogonal if their inner product
is zero.
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DEFINITION 7. A vector space with an inner product defined on it is

called an Euclidean space. ‘
For vectors of the vector space R,, the expression

n
X'Y=3 Xx:¥:

i=1
satisfies the definition of inner product. With this definition R
becomes a Euclidean space. This Euclidean space, if of dimension
n, shall be denoted by E». On account of its importance in the present
work we give afresh the definition of E, which may be understood
without reference to general definitions of vectors and vector spaces
given above.

DEFINITION 8. Let R, be a set of ordered n-tuples of real numbers.
For every pair of n-tuples X, YE R, let
(i) Sum: X+Y=Y+X=(x;+y;, X3+ V2. - -, XntVn)ERn;
(ii) Product: aX=(ax,, ax,..., axs)€ Rn, aER;
(iii) Inner product: X'Y=Y'X=x;y;+X3¥s+...+XsynER;
be defined. Then the n-tuples are called vectors and R, is called a
Euclidean space. Also let
(iv) There be at least one set of n linearly independent vectors in
R,. Then R,is a Euclidean space of dimension n which we
shall denote as E,.

It should be noticed that the additional condition ‘every set of n41
vectors in R, is linearly dependent’ which was included in definition
5 has been dropped in (iv) above. The reason is that in this case
it is implied and its explicit statement will be superfluous (see
problem 10).

Example: The set of column vectors [100}’, [010]’, [001] is a basis
of R;. For, these vectors are linearly independent, and any vector
[%; X2 x;]° of R; can be expressed as a linear combination of these
vectors as follows.

X 1= [ 1 +x [0 ]4x [0
% 0 1 0
X3 | 0 0 1

This basis is called the canonical or the natural basis of R;. Another
basis of R;is[100j, [110]’,[111]. For,

HHptEs

where c=Xx;, b=x,—X3, a=X;—X,.




