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SERIES EDITOR’S PREFACE

One service mathematics has rendered the
human race. It has put common sense back
where it belongs, on the topmost shelf aext w0
the dusty canister tabelled ‘di d !

‘Ht moi, ..., si j'avait su comment en revenir, je
n’y scrais point allé.’
Jules Verne

The series is divergent; therefore we may be Eric T. Beill

able 10 do something with it.
0. Heaviside

Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and nonlineari-
ties abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sci-
ences.

Applying a simple rewriting rule to the quote on the right above one finds such statements as: ‘One ser-
vice topology has rendered mathematical physics ..."; ‘One service logic has rendered computer science
... ‘One service category theory has rendered mathematics ...". All arguably trae. And all statements
obtainable this way form part of the xaison d'étre of this series.

This series, Mathematics and Its Applications, started in 1977. Now that over onc hundred volumes have
appeared it seems opportune to reexamine its scope. At the time I wrote

*‘Growing specialization and diversification have brought a host of monographs and textbooks
on increasingly specialized topics. However, the ‘tree’ of knowledge of mathematics and
related fields does not grow only by putting forth new branches. It also happens, quite often in
fact, that branches which were thought to be completely disparate are suddenly seen to be
related. Further, the kind and level of sophistication of mathematics applied in various sci-
ences has changed drastically in recent years: measure theory is used (non-trivially) in
regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky
lemma, coding theory and the structure of water meet one another in packing and covering
theory; quantum fields, crystal defects and mathematical programming profit from homotopy
theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use
Stein spaces. And in addition to this there are such new emerging subdisciplines as ‘experi-
mental mathematics’, ‘CFD’, ‘completely integrable systems’, ‘chaos, synergetics and large-
scale order’, which are almost impossible to fit into the existing classification schemes. They
draw upon widely different sections of mathematics.”

By and large, all this still applies today. It is still true that at first sight mathematics seems rather frag-
mented and that to find, see, and exploit the deeper underlying interrelations more effort is needed and so
are books that can help mathematicians and scientists do so. Accordingly MIA will continue to try to make
such books available.

If anything, the description I gave in 1977 is now an understatement. To the examples of interaction
areas one should add string theory where Riemann surfaces, algebraic geometry, modular functions, kuots,
quantum field theory, Kac-Moody algebras, monstrous moonshine (and more) all come together. And to
the examples of things which can be usefully applied let me add the topic ‘finite geometry'; a combination
of words which sounds like it might not even exist, let alone be applicable. And yet it is being applied: to
statistics via designs, to radat/sonar detection arrays (via finite projective planes), and to bus connections
of VLSI chips (via difference sets). There seems to be no part of (socalled pure) mathematics that is not
in immediate danger of being applied. And, accordingly, the applied mathematician needs to be aware of
much more. Besides analysis and numerics, the traditional workhorses, he may need all kinds of combina-
torics, algebra, probability, and so on.

In addition, the applied scientist needs to cope increasingly with the nonlinear world and the extra
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mathematical sophistication that this requires. For that is where the rewards are. Linear models are honest
and a bit sad and depressing: proportional cfforts and results. It is in the nonlinear world that infinitesimal
inputs may result in macroscopic cutputs (or vice versa). To appreciate what I am hinting at: if electronics
were linear we would have no fun with transistors and computers; we would have no TV; in fact you

would not be reading these lines.
There is also no safety in ignoring such outlandish things as nonstandard analysis, superspace and CONTENTS
amif:omxflu!ing integration, p-adic and ultrametric space. All three have applications in both electrical :
engineering and physics. Once, complex numbers were equally outlandish, but they frequently proved the
shortest path between ‘real’ results. Similarly, the first two topics named have already provided a number
of ‘womhole'.p:eths. There is no telling where all this is leading - fortunately,
Thus the original scope of the series, which for various (sound) reasons now comprises five subseries: SERIES EDITOR'S PREFACE v
whxtf: (Japan), yellow (China), red (USSR), blue (Eastern Europe), and green (everything else), still
appll?s. It has been enlarged a bit to include books treating of the tools from one subdiscipline which are : PREFACE
used in others, Thus the series still aims at books dealing with: ; bx
. . : ; INTRODUCTION
- a camal concept. which plays an important role in several different mathematical andfor scientific i .
specialization areas; ) ! CHAPTER 1. COMPLETE EXPONENTIAL SUMS 1
- Dew apphcau?ns of the results and ideas from one area of scientific endeavour into another; !
- zﬂu:nc« wlmf:h the results, problems and concepts of one field of enquiry have, and have had, on the ; §1. Sums of the first degree 1
velopment of another. '
o ! §2. General properties of complete sums 7
The method of exponential sums is one of the few general methods in (analytic and ‘elementary’ ! i
: C tary’) number ; 3. Gaussian sums 13
geory.R.ma!;otwnhauadoqbt,?l.leo.fthefnmpowelfulmGaﬁngacqmm'tedwithit,andlcamm’g : X .
byap%!efzxrme its ﬁ and appl;:bxhty, is a bit of a problem though. The standard sources were composed §4. Simplest complete sums 22
an expert analytic number theorists.
ua.tlihe lmslie“t monograph gives a straightforward accessible account of the theory with a number of illus- : §5. Mordell's method 29
. . - . .
mwv app! (c,;“""’ ("; :n“m‘:;;"}” but al;::‘:0“;':::1""‘;’lm_‘l\mnons). At the same time it contains some , §6. Systems of congruences 34
my'l"l)le.n'lain t::;n b?:) ;Inx sexi‘:;s to improve understanding between different mathematical specialisms. In §7. Sums with exponential function 40
pinion contributes nontriviaily to that,
§8. Distribution of digits in complete period of periodic
The shortest path betwoen two truths in the real Never lend . fractions 45
domain passes through u.: complex domain, o oy bmml h:e ": 0:; wﬁ:w mm ::: §9. Exponential sums with recurrent function 53
) thas otber folk have ""‘:‘:‘o §10. Sums of Legendre's symbols 61
e France
La physique
Pootion de sy s Lo Sl CHAPTER II. WEYL'S SUMS 68
nous it iy - clle The fanction of an cxpert is not t be more right ,
preasentir sulm:u. than othict people, but to be wrong for mare §11. Weyl’s method 68
Poincars histicated .
= owsons David Butier §12. Systems of equations 78
B oF 1992 §13. Vinogradov’s mean value theorem 87
ussum, 9 February . .
Michicl Hazewinkel §14. Estimates of Weyl’s sums 97
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PREFACE

The method of exponential sums is one of a few general methods enabling us to solve a
wide range of miscellaneous problems from the theory of numbers and its applications.
The strongest results have been obtained with the aid of this method. Therefore
knowledge of the fundamentals of the theory of exponential sums is necessary for study-
ing modern number theory.

The study of the method of exponential sums is complicated by the fact that the well-
known monographs [44], [16] and [17] are intended for experts, embrace a large number
of the fundamental problems at once, are written briefly and for these reasons are not
really suitable for a first acquaintance with the subject.

The main aim of the present monograph is to present an as simple as possible exposi-
tion of the fundamentals of the theory and, with a series of examples, to show how
exponential sums arise and are applied in problems of number theory and in questions
connected with their applications. First of all, the book is intended for those who are
beginning a study of exponential sums. At the same time, it can be interesting for
specialists also, because it contains some results which are not included in other
monographs.

This book represents an expanded course of the lectures delivered by the author at the
Mechanics and Mathematics Department of Moscow University during the course of
many years. It contains the classical results of Gauss, and the methods of Weyl, Mordell
and Vinogradov, which are exposed in detail; the traditional applications of exponential
sums to the distribution of fractional parts, the estimation of the Riemann zeta-function,
the theory of congruences and Diophantine equations are considered too. Some new
applications of exponential sums are also included in the book. In particular, questions
relating to the distribution of digits in periodic fractions, arising in the expansion of
rational numbers under an arbitrary base notation, are considered, and 2 number of results
concerning the completely uniform distribution of fractional parts and the approximate
computation of multiple integrals are discussed.

Questions concerning the additive theory of numbers are not included in the book,
because for their real understanding one should master the fundamentals of the theory of
exponential sums. It will be easier to become acquainted with these and other questions
exposed in the monographs [44], {17], [47], [6] and [43] following a subsequent, more
profound study of the subject.



To read this book it is sufficient to know the fundamentals of mathematical analysis
and to have a knowledge of elementary number theory. For those, who are coming t0
grips with the subject for the first time, it is recommended to combine the reading of this
book with solving problems concerning the investigation and application of the simplest
exponential sums [45].

INTRODUCTION

An exponential sum is defined as a sum of the form

S(P)=Ze21rif(z), (1)

where z runs over all integers (or some of them) from a certain interval, P is the
number of the summands and f(z) is an arbitrary function taking on real values
under integer z. Many problems of the number theory and its applications can be
reduced to the study of such sums.

Let us show, for instance, how exponential sums arise in solving the problem of
possibility to represent a natural number N in the form of a sum of integer powers
of natural numbers, the exponents being equal,

N=zr;++$: (2)

(Waring’s problem). Let n and k be fixed positive integers, P the greatest integer
1

not exceeding N7 and T;(N) the number of solutions of the equation (2). For an
integer a, let the function ¥(a) be defined by means of the equality

1

— 2rtaa — 1 if a=0.
‘1’(“)“/" d""{o i a#0.

0

Then obviously

P P i
Ti(N) = Z P(e +...+zg—N)= Z /ez"i @4tz -Nog,
?

Ly, Te=1 Ty =1

1 P k
= /C—waaN(ZCZNlar > da.
z=1

0

Thus the arithmetic problem concerning the number of solutions of the equation (2)
is reduced to the study of integral depending on the power of the exponential sum

P
S(Py= erter. (3)
z=1



xii Introduction
For applications, the most important sums are those, for which the function f(z)
is a polynomial and the summation domain is an interval:

Q+P
S(P)= Z BZWif(z), f(g;):a,z+...+a"a:". (4)
z=0Q+1

Such exponential sums are called Weyl’s sums and the degree of the polynomial
f(z) the degree of the Weyl’s sum. So, for example, the sum (3), arising in Waring’s
problem, is a Weyl’s sum of degree n.

The main problem of the theory of exponential sums is to obtain an upper estimate
of the modulus of an exponential sum as sharp as possible. As the modulus of every
addend of the sum is equal to unity, so for any sum (1), the following trivial estimate
is valid:

IS(P) < P.

The first general nontrivial estimates were given by H. Weyl [49]. Under certain
requirements for the leading coefficient of the polynomial f(z), he showed that under
any € from the interval 0 < £ < 1 there holds the estimate

P
Z ch‘ flz)

z=1

12
< C(n,e)P 271, (5)

where v = 1 — ¢ and C(n,¢) does not depend on P. Under n 2 12 the essential
improvement of this result was obtained by I. M. Vinogradov {44}, who showed that
¥

1-—
in the estimate (5) under certain v > 0 the right-hand side C(n,e)P 2"~' might
7
l_
be replaced by the quantity C(n)P ™'leg 7
If fractional parts of function f(z) have an integer period, i.e., if under a certain
positive integer T the equality {f(z + )} = {f(z)}, where {f(z)} is the fractional

part of the function f(z), holds for any integer z, then the sum

S(T) = Zezﬂf(z)

z=1

is called a complete exponential sum. As an example of a complete exponential sum
we can take the Weyl’s sum, in which all coefficients of the polynomial f(z) are
rational and the number of summands is equal to the common denominator of the
coefficients:

q 2mi gy z4...fapz”
S(g)=Y e TR (6)
z=1

Under a, # 0 (mod ¢) such sums are called complete rational sums of degree n.
There are more precise estimates of these sums, than estimates of Weyl's sums of the
general form.

Introduction xili

The thorough research of complete rational sums of the second degree was carried
out by Gauss. In particular, he showed that under (a, ¢) = 1 for the modulus of the

sum .
q az?

S(Q) - Zﬁ%ri p

=1

the equalities

N7} if ¢g=1(mod 2),
15(g)l = ¢ V¢ if ¢=0(mod4),
0 if ¢=2(mod 4)

are valid.
For complete rational sums of an arbitrary degree under a prime ¢ Mordell [36]

obtained the estimate
. a1f+...Fanz”

LA 2w
e

=1

< Cn)g' ¥, ™

where C(n) does not depend on q. Hua Loo-Keng [17] extended this estimation to
the case of an arbitrary positive integer g. An essential improvement of the Mordell's
result was got by A. Weil [48], who showed that under a prime g the modulus of the
sum (7) does not exceed the quantity (n —1),/q. Under fixed » and increasing ¢ the
estimates by A. Weil and Hua Loo-Keng are the best possible, apart from the values
of the constants, and do not admit further essential improvement.

Another example of complete sums, different from the complete rational sum (6),
is a sum with exponential function

r z

S(ry =Y e, (8)

z=1

where (g,m) = 1 and 7 is the order of g for modulus m. The problem of the number
of occurrences of a fixed block of digits in the first P digits of a periodical fraction,
arising under g-adic expansion of an arbitrary rational number ﬁ, is reduced to
estimations of sums (8) and sums S(P) for P < 7 [32]. The magnitude of the sum
(8) depends on the characterization of prime factorization of m and it turns out that
for complete sums this magnitude is equal to zero in most cases. But if P < 7, then

under n = i—:’)‘;—g and m being equal to a power of a prime, the estimate

X

<CP

P aq®

Z 2w
e m

z=1

where C' and v are absolute constants, holds.
The necessity to estimate exponential sums arises in the problem of approximate
computation of integrals of an arbitrary multiplicity 23] as well. Let us consider,
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for instance, a quadrature formula constructed by means of an arbitrary net My =
M(&i(k),Ex(k)) (k=1,2,..., P)

11 P
[P dader = 5 Y- Fle0).60) - Relf) (9)
k=1

00 ;

where F(z;,z;) is a periodic function given by its absolutely convergent Fourier
expansion
> .
F(zl,fﬂa) = Z C(ml,mz)ez’"(m\tri-mzzz).

my,my=—00

Substituting the series into equality (9) we get after interchanging the order of sum-
mation .

e P
1 ! .
Rp[F] = P Z C(my, m2) Z 52"'(’"151(k)+m252(k))’
my,ma=—00 k=1

where }:’ denotes the summation over all (m;,m;) # (0,0). Hence the error term in
the quadrature formula (9) satisfies

=<}

RAFII< 5 Y [Clma,ma)l|S(my,ma)l,

nmy,m;=-—00

ol

where the exponential sum

P .
S(my,mz) = Ze2fi(mlfl(k)+m2€:(k))
k=1

is determined by the introduction of the net M(£;(k),£2(k)). Choosing the functions
£1(k) and &;(k) so that the sums S(m;, m;) could be estimated sufficiently well, we
get the opportunity to construet quadrature formulas of high precision.

Chapter I of this book contains a detailed exposition of some elementary knowl-
edge from the theory of complete exponential sums and sums, which estimations are
reduced to estimations of complete sums, Theorems treated in the chapter are com-
paratively simple, but they constitute the base of the theory of exponential sums of
the general form and serve as a necessary preparation to more complicated construc-
tions of Chapter II. To illustrate possible applications of complete sums, the solution
of the problem concerning the distribution of digits in the period of fractions, aris-
ing in representing rational numbers under an arbitrary base notation, is given in
Chapter 1.

A technique used in Chapter II is much more complicated than in Chapter I. Chap-
ter II is devoted to an exposition of the theory of Weyl’s sums of the general form.

Introduction -

In the chapter, the fundamental methods by Weyl and Vinogradov are presented
as well as researches based on the repeated application of the mean value theorem;
their applications to estimation of sums, arising in the Riemann zeta-function theory
[25]~{28], are given also.

In Chapter III, the exponential sums applications to the distribution of fractional
parts and the construction of quadrature formulas are considered. The Weyl theory
of uniform distribution is exposed, the questions of complete uniform distribution {20]
and their connection with the theory of normal numbers [22] are also considered there.
The final part of the chapter is devoted to the problein of approximate calculation
of multiple integrals and to construction of interpolation formulas for functions of

many variables {23}, [29], and [30].



CHAPTER 1

COMPLETE EXPONENTIAL SUMS

§ 1. Sums of the first degree

The simplest example of Weyl's sums is the sum of the first degree

Q+P

S(P)= Z eZ«ia:'

z=Q+1

This sum pertains to a number of a few exponential sums, which can be not only
estimated but evaluated immediately. In fact, if « is an integer, then 2™ * =1 and

therefore
Q+P

Z Q2riaz _ p

z=Q+1

But if « is not an integer, then e?™* # 1, and, summing the geometric progression,
we have

Q+P 2mi e2riaP _q 2mia(Qr1)
mazr __ < ria
Z € T elmia 1 € : (10)
z=Q+1

But usually it is more convenient t6 use not these exact equalities but the following
estimate:

LEMMA 1. Let a be an arbitrary real number, @ an integer, and P a positive integer.
Then
1
<min| P, — |, (11)
< ( 2nau)

where ||a|| is the distance from a to the nearest integer.

Q+P

Z elrioz

z=Q+1

Proof. Since the both sides of (11) are even periodic functions of a with period 1,
then it suffices to prove the estimate (11) for 0 < @ < ;. Observing that over this
interval

e2mie — 1| = 2sin 7o > 4a = 4fa),



2 Complete exponential sums [Ch. 1, § 1

then under a # 0 from the equality (10) we get

%ZP e2m’ azr| _ ICZm'aP - 1[ 1
2 75 1] < 2a]’

For 5115 Lax % using this estimate and for 0 € a < 53; applying the trivial estimate

Q+P

eZm' az

z=Q+1

<P

we obtain the assertion of the lemma.
Let a be an arbitrary integer and g a positive integer. We define the function é,(a)
with the help of the equality

_J1 if e=0(modyg),
51(“)‘{0 i a0 (modg)

In the next lemma the connection between this function and complete rational sums
of the first degree will be established.
LEMMA 2. For any integer a and any positive integer g we have the equality

1 ? 2mi 22
-.s,(a)=q—2e 7, (12)

z=1

Proof. If a = 0(mod gq), then

1 L 2mi — 1 eZm’a -1 2xil
- e I =—cec—e—e 1=0.
e Ty

The assertion of the lemma obviously follows from these equalities and the definition
of §,(a). ’

The function §,(z) will be used in the further exposition permanently. Its impor-
tance is determined by the fact that it enables us to establish the connection between
the exponential sums’ investigation and the question of the number of solutions of
congruences.

Ch. 1,§ 1) Sums of the first degree 3

Let us consider, for instance, the question of the number of solutions of the con-
gruence

@ +...+z; =) (modg), (13)

that is analogous to the question of the number of solutions of Waring’s equation (2),
which was mentioned in the introduction. We denote the number of solutions of
this congruence, as the variables z;,...,z, run through complete sets of residyes
to modulus ¢ independently, by T(A). Obviously, by virtue of the definition of the

function §,(x)
7

TO) = Y &zt +... 437 =)

z;,...,z,‘:l
Hence it follows by Lemma 2 that

ca(zP+.rzp =)

1 1 I 2m
T = ). EZe z

1 —2mi al L mi a(z - +zi)
= - q Z e q
7 a=1 :‘.7..,zk=l
k
1 ! —2ni ak L 2w ——
1y
g a=1 z=1

Thus the number of solutions of the congruence (13) is represented in terms of com-
plete rational exponential sums

] .az”

S(a, q) = Zezm v

z=1
We expose some properties of the function 64(z), which follow from its definition
immediately.

1°. The function §,(z) is periodic. Its period is equal to g.
2°. If (@, ¢) = 1 and b is an arbitrary integer, then the equalities

by(az) = 6,(2),

q

Y Sglaz +b) =1

z=1
are valid.
3°. Under any positive integer q;, the equalities

91
bqiq(@rz) = éy(z), Zéqxq(z + qy) = bq(x)

y=1



4 Complete exponential sums [Ch. 1§12

hold.
4°. If (q1, q) = 1, then the equality

bg19(x) = by, (2)84(2)

is valid.
5°. Under any positive integer P, which does not exceed ¢, we have
° 1 i 1<zgP
Z5q(z'—y)={0 if P<z<u. (14)

LEMMA 3. Let g be an arbitrary positive integer, 1 € a < ¢, and (e, ¢} = 1. Then
the estimates

Y o <2qlog g,
z=1 ”—q-”
=t

< 18Mloglyq,
=1

where M is the largest among the partial quotients of the simple continued fraction
of the number ;5, hold.

Proof. Let m be an arbitfa.ry positive integer. Under z > 1 using the inequality

% <log(2z 4+ 1) —log {2z — 1),
we obtain
1
~- 27 —~1) = )
. Z log (22 + 1) — Z log (2z l) log (2m + 1).
1zgm 1gzgm 1zgm

Hence under odd and even g, respectively, it follows that

-1 =2
L 21 1

- g log g, —<Klog(g—1)< —=+log q. 15
;x g q Z:lz B(g-1) <~ +log g (15)

Since the function ||"T’|| is periodic with period ¢ and (a, ¢) = 1, then under odd ¢
according to (15) we get

£~
Wil
-
o
i
-

£y
|
—
Pt
-
i
—

£ 2qlog q.

i

l...

Il

[\

IH

il

Do

<
™~
& |-

N
]
A
™
wlf
L]
[
L3
L~1E]
N
.l_l_
ey
L]
i
X

Ch. 1, § 1} Sums of the first degree

But the same estimate is obtained by (15) under even ¢ as well:

-2

=

#|

L 1
Z __-’E =2+2¢ ;S?qlogq.
z=1 q

z

i
-

The first assertion of the lemma is proved.

To prove the second assertion we shall apply the Abel summation formula

g—1 -1

m
IRIE SRS ) o
=]

=1 =1

Under u, = i and v; = Rﬁ-ﬁ we obtain
q

-
I
-
—

w

1
== (16)
OE - R AN
Let the expansion of the number £ in simple continued fraction be
a1
9 a+—
@+,
o
+=—.
qn
“Then under v = 1,2,...,n the following equalities take place:
a P, 8,
where P, and Q,, are relatively prlme, 1=0 £Q1 < < Qn=24¢q Q <
(q:: + I)Qu -1 X 2MQv-l
If 1 <m < g, then determining v from the condition
Py Qu—l m< Qu
and using the equality (17), we get
P,z 6,z
18
151 4N 1)
Since under 1 € z < 5@, we have
8,z 1 1 P,,::
Q| " 20 " 2Q
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hence from (18) it follows that

SR

Qu
Then using the first inequality of the lemma, we obtain
m Q, -1 1
2] _z <2} ipar S4QulQ
LT S & 5
<8MQ,_;logg<186Mmlog q. (19)
But if g < m < g, then
q-l 1

< 2qlog g < 4mlog g,

i": 1
z=1 ||ng_"

z=1 ”aT“

and, therefore, the estimate (19) holds not enly for m < 1q, but for any m < g as
well. Substituting it into the equality (16), we get the second assertion of the lemma:

g—1 g~1
“;g“ 2logq+216M10gq 18 Mlog?q.
z=1 q m=1

Now we'll show how these lemmas, containing quite a little information concerning
exponential sums, enable us to get nontrivial arithmetic results.
Let (a,q) =1, P, < g, P, < ¢, and T be the number of solutions of the congruence

azy =z, (modg), 1€ €A, 1€ < P - (20)
If P, or P; equals g, then, evidently,

r-'pn,
q

The question becomes more complicated, if both Py and P, are less than g. In this
case, it can be shown that

T= %P,P2 +96Mlog’q, |61<1, (21)

where M is the largest among partial quotients of the simple continued fraction of
the number ‘ql.

Ch. 1.§ 2] General properties of complete sums 7

Really, using Lemma 2, we obtain

P, P, P P, (ux; t;)t

T=Z Zéq(axl—zg)=%z lg

z1=1 r2=1 =1 ;=

Hence, after singling out the summand with z = g, it follows that
1
T==-PP,+R, (22)
q

where

Thus the problem concerning the number of solutions of the congruence (20) is re-
duced to the problem of the estimation of Weyl’s sums of the first degree. Using
Lemma 1 and observing that ||£|| and l|£2|| are even periodic functions with period

g, we get
q—l 1
IR| € min (P , = ) min (P , )
s 2min (P o)\ ]

1 1 1
% T JEEE L A
l<|:|< 7 1€2< 2 7
Hence according to Lemma 3 it follows that
|R| < 9Mlog?q,
and by (22) this estimate is equivalent to the equality (21).
§ 2. General properties of complete sums
As it was said above, the sum
S(r)y =3 ™/ (23)
=1

is called a complete exponential sum, if under any integer = for fractional parts of
the function f(z), the equality {f(z + )} = {f(z)} is satisfied.
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We shall expose some examples of complete sums. Let a;,...,a, be integers and
@(z) = a1z + ...+ a,z". Since, obviously,
(z4+4¢)=2" (modq) (r=1,2,...,n),

then the following congruences hold:

n

Z a,(z+q) = Za,,:c” {mod g),

v=1 v=1

e(z+q)=p(z) (modg).

But then under any integer =

)2,

and, therefore, the sum

q 2w e(z) 2w a1 z4...Fanz™
S(=) e T =) L
z=1 z=1

which was called a complete rational sum in the introduction, is a complete expo-
nential sum in the sense of the definition (23).
Now let us consider a sum with exponential function

ag®

S(r) =Y e (24)

=1

where (a,m) = 1, (¢,m) = 1 and 7 is the order of ¢ for modulus m. Let ¢~!
denote the solution of the congruence gz = 1(mod m). Then using the congruence
q" = 1{mod m), under any integer x we obtain

aqx+r _fa qz
(o) -{)

Therefore 7 is a period of fractional parts of the function 53; and the sum (24) is a
complete exponential sum.

Expose some properties of complete sums, which follow from the definition directly.

1°. The magnitude of the complete exponential sum (23) will not change, if the
summation variable runs through any complete set of residues to modulus 7 instead
of the interval [1,7].

Really, since {f(z + 1)} = {f(=)}, then under = = y (mod ) the equality {f(z)} =
{f(y)} holds. But then

e21rif(z) = e27"' F(y)

Ch. 1§ 2] General properties of complate sums 9

and the totality of the summands of the sum (23) is independent of whichever com-
plete set of incongruent residues to modulus 7 is run by the summation variable,

2°.If (A,7) = 1, pis an integer and n is a positive integer, then for complete sums
the equalities

T r
ZCZM' =) ZCZm' f(,\z+u)’ (25)
=1 =l
nr T
ZCZm' flz) — n Z g2 f(z} (26)
=1 z=1

hold.

The first among these equalities is a particular case of the property 1°, because
under (A, 7) = 1 the linear function Az + u runs through a complete set of residues
to modulus 7, when z runs through a complete residue set to modulus 7. The second
equality follows from 1° as well, for under varying from 1 to nr the summation
variable runs n times through complete residue set to modulus 7.

3°. If sums

T T
Z e2rifilz)  ,p4 Zeh’i fa(x) (27)
z=1 z=1

are complete, then the sum
,
Z g2mi (‘f1(=)+fz(1=)) (28)

z=1

is complete also.
Really, it follows from completeness of the sums (27), that fractional parts of the

functions fi(z) and f;(z) have the same period r:
hz+n} =A@} {AG+7) = (L)}

But then
{filz +7)+ fz + 1)} = {fi(2) + fa(2)}

and, therefore, the sum (28) is a complete exponential sum.

THEOREM 1 (multiplication formula). Let under integers z

{f@)} ={Ailx) +... + fs(=)}, (29)
where fractional parts of the functions f1(z),. .., f.(z) are periodic and their periods
T1,..., T, are relatively prime to each other. Then the equality

TLeeTs s 7
Z e2mi f(z) _ H Z eZwif.,(z,) (30)
z=1 v=1 z,=1

holds.
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Proof. Since by the assumption |
e+t =L@} =129 Y

and by (29)
’ {f(m+rl'--fs)} ={f(x)}7

then all the exponential sums in the equality (30) are complete. Let variables
1,...,Z, Tun independently through complete residue sets to moduli 71,...,Ts, 7€
spectively. Since the r,..., 7, are coprime, then the sum

ZyTp.. . Tot+ oot T1o Tem1Ts

runs through a complete residue set to modulus 7y ...7,, and, therefore,

T1ee:Ts ™ Ts
Z ezﬁf(z) = Z . Z e?ﬂ'if(zlT:...T,+4..+1’1...1'...12‘,). (32)
z=1 =1 z,=1
Since by (29) and (31)
{f(z;ime...Ts .. 710 Tz} = {fil@ima o Te) Ao fo(maes Ts-1Ts)}

then the equality (32) may be rewritten in the form

TLTs n 7.
Z e’lm’ =) = Z . Z eh‘i(,h(z;rg...‘r,)-}-...-}-f,(rl...-r._;z,)).

=1 z1=1 z,=1

Hence, using the property (25), we obtain the multiplication formula:

T]..eTs T s 3 Ty
Y e = 3 Y e (e0r-t L= = T 3 e bl
z=1 =1 z,=1 v=1 z,=1

In a number of cases, the multiplication formula simplifies the study of complete
sums. As an example of that we shall consider complete rational sums. '

Let ¢(z) = a1z + ...+ a,z" be an arbitrary polynomial with integral coefficients,
g =p7'...p5* prime factorization of ¢, and numbers by,...,bn be chosen to satisfy

the congruence
1=bpSt...p3 +... 4+ ...p3t3th,  (mod g). (33)

Then for complete rational sums the following equality holds

q av 2mi b, plz,)

27ri-"¥l d il pov
Y =] X - > (34)

z=1 v=1 z,=1

Ch. 1.§ 2] General properties of complete sums 1

Really, since

9°($+9)} _ {?(r)} {bu;(r+p3")} _ [ buylz)
{ q g I e 1 p‘u’”} dsvss)

and by (33)
e} (oot bota)),
q Py ps’

then applying Theorem 1, we obtain the equality (34).

The multiplication formula (34) reduces the investigation of complete rational sums
with an arbitrary denominator g to the investigation of simpler sums with a denom-
inator being a power of a prime.

As another example on the multiplication formula we shall prove the equality

! ‘t—’- ! 21ri-:Ez
— ; 4
7 = (1 -—z")Ze ll,

z=1 z=1

=1 (mod 2), (35)

Single out the summands, for which z is a multiple of ¢, and group the others in four
sums:

4 2 - 2 2q—1z)* 2 ST |
21ms = -1 2mi 278 (29-2) 2mi (2a+2) 2wt _——-(4‘1 =)
S=Ye T +Y [e M4e M te M fe M
=1 z=1
2 - 2
4 & 47l g2t
=Y tade (36)
= =

On the other hand, according to the multiplication formula

2
. b2z

4 byz?
27ri——-‘z1 K 2wi
B SCAID

=1 ra=1

?Nhere:‘ b, and b, satisfy the congruence gby +4b; = 1 (mod 4¢). Since this congruence
ls.satlsﬁed under b; = ¢ and b; = }(1 — ¢%), then after singling out the summand
with z; = ¢ and replacing z; by 2z, we obtain '

2

4 2mi bizy 4 2ri ———-blzf ! 2w 4622
S SIS S W

=1 z1=1 r=1

4 2 2 - 2

PAPE AN I i il gAY 4

=YY T Y e (37)

=1 =1 . r=1
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Now observing that ,

1 ZWiE—L
S 1 =214+,
P

1=1

H

from (36) and (37) we get the equality (35):

2

2
=1 g =l 2 i P 5
21 - 4 e , i
E e’n q =~;———-‘ E e 40___(1_11) E € 41.
q
z=1 ~(1 t1 )z=l z=1

Now we shall consider a certain class of exponential sums, whose nontrivial esti-
mates can be easily obtained by the reduction of the problem to the estimation of

complete sums.
Let fractional parts of a function f(z) be periodic, their least period be equal to

r,1 € P < 7 and Q an arbitrary integer. Then the sum

Q+p
SPy= Y miE (38)

z=Q+1

is called an incomplete exponential sum.
THEOREM 2. For any incomplete exponential sum S(P) defined by the equality (38},

the estimate .

|5(P)| £ max Zchi(“’H%{)

1€agr
r=1

(1 +log )

holds.
Proof. From the property (14) of the function é,(z) it follows that under P < 7

Q+P

y=Q+1

Applying this discontinuous factor and using Lemma 2, we obtain

if Q+1<z<Q+P,
if Q+P<z<@Q+ .

Q+P Q+r  Q+P
Z e2mf(z) — Z eZm f(z) Z 5,-(1.‘ _ y)
z=Q+1 r=Q+1 y=Q+1
T Q+P a Q+r
1 Z < Z ~2mi _y) 2 (j(z)-{»H)
= - € T Z € T
T a=1 \y=Q+1 T=Q+1

Since fractional parts of the functions f(z) and 2% have period 7, then by (28) the
latter sum in this equality is complete and, therefore,

Q+P Q+P A ‘
§~ i Ly ( 3 —) § o (19432),
T

z=Q+1 a=1 \ y=Q+! =1

Ch. 1, § 3] Gaussian sums 13

Hence, using Lemmas 2 and 3. we get the theorem assertion:

Q+P . 1 r 4 Gy ar 1 N
Z e2mi fle) < _Z Zelm(f(t)-.LT) min (P, : )
r=Q+1 T a=1}zr=1 2”;“
< 1 max i:e“i(f(z)*'&’{) zr:min P 1
T lﬂa{r r=1 a=1 ' 2”%”
2 (seey+22)
< xrélfg‘{r 2:1 e /(14 log 7).
Ir=

§ 3. Gaussian sums

A Gaussian sum is a complete rational exponential sum of the second degree

9 . nx?

S=Y " T,

=1

where ¢ is an arbitrary positive integer and (a,¢) = 1. Gaussian sums as well as the
first degree sums considered in the first paragraph can be evaluated precisely. We
shall start with a comparatively simple question about the evaluation of the modulus
of such sums.

THEOREM 3. For the modulus of the Gaussian sum, the following equalities hold
true:

Ve if g=1(mod2),
IS(a)l = { V2¢ if ¢=0(mod 4),
0 if ¢=2(mod 4).

Proof. Let the complex conjugate of the sum S(g) be denoted by S(q). Then we get

2
. 2y .az?

IS@P =S@S(@) = e 3

=1 =1

Utilize the second property of complete sums and replace z by z + y in the inner
sum. Then after interchanging the order of summation, we obtain

9 a(z+y)’—ay’ .az® 4 . 2azy

q .
ls(q)|2 - Z Ze"”" e _ ZezmT ZEZm

=1 y=1 =1 y=1
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Hence by Lemma 2 it follows that
ki 273 'aiz .
IS@F =q) e @ &(2ax). (39)

=1
Since a and g are coprime by the statement, then under odd g the only nonzero
summand of the right-hand side of this equality is the summand obtained under

z = ¢, and therefore )

2xt 2
1S() =ge T =4 (40)
But if ¢ is even, then in the sum (39) there are two nonzero summands which are
obtained under z = !¢ and z = ¢. Therefore, observing that under even g, from
(a,¢) =1 1t follows that a 1s odd, we get

. aq g .
2 (2wt _ foemid _ {29 if ¢=0(mod4),
15(2)l -q(c ! +1)_q(e 4+1)_'{0 if ¢=2(mod4).

The theorem assertion follows from this equality and (40).
Note that in the case of odd ¢, the assertion of Theorem 3 is valid for sums of the

general form, too.
Indeed, let us show that under (2a;,q) =1 the equality

. arz+azz?

L] 2m
2 !

z=1

=7 (41)

holds. Choose b satisfying the congruence 2a;b = a; {mod ¢q). Then obviously
a1z + a2z’ = az(z + b)? — azb*  (mod g)

and, therefore,

2 2 ax(z+b)?
a1 z+aqsz . axb® q bn.u

g 208 ——— —2mi
>

=1 z=1

Hence we obtain the equality (41):

q e z+aqz? q . ax(z+b)?
27wy —— 2mi
E e q = E e 9 = \/6,
z=1 z=1

Let as consider the simplest properties of Gaussian sums. We shall assume that
q = p, where p > 2 is a prime. It is easy to show that under a = 0 (mod p) the

following equality holds:

2 x'gz—’- p! xi 3%
ST =y (3), (42)

r=1 z=1

Ch. 1, § 3] Gaussian sums

where (f) is Legendre's symbol. Indeed, if z varies from 1 to p—1, then z2

twice through values of quadratic residues of D, and since

()

then

z=1

-

if =z is a quadratic residue,
if zis a quadratic non-residue,

ar

Hence observing that by Lemma 2 under a = 0 (mod p)

p—l ., a1
2% 3%
1+ ZC T = pby(a) =0,
z=1

we obtain the equality (42).

Now we shall show that under a = 0 (mod p)

P az

z=1

2

ZCZm‘T - (g) iehn-;’—.
p =]

. T

2

ar

P omiazl 20 amigfl = ;
ST o1 T =1+Z[1+(£)]J"'7,
=] z=1 p

15

runs

(43)

. . . 2
Indeed, multiplying the equality {(42) by (“T) = 1 and observing that az runs through

a complete set of residues prime to p when z runs through such a set, we get

P p

2

DRERIO)>

z=1 =1

(

The equality (43) follows, because by (42)

z=]

Next we shall show that knowing

E (£>ezn‘§ _ Zczm"?
p

z=1

(

=1

z) 2mi &
e .
b

the modulus of a Gaussian sum it is easy to
evaluate its value to within the accuracy of the sign. Indeed, let !

La 211'1":'—2
Sp)=) e 7.

Then, using the equality (43), we get

3m=Y T - (‘—1)

=1

z=1
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Hence after multiplying by (5!)S(p) it follows that

S%(p) = (’71)15(17) 2o (%) >

Now, since (=1) takes on the value 1 under p = 1 {mod 4) and the value —1 under
p = 3 (mod 4), we obtain

s ={ 5%

The question about choosing the proper sign in these equalities is more difficult.
Its solution was found by Gauss. A comparatively simple proof of the Gauss theorem
given in the paper [9] is exposed below.

if p=1(mod4),

if p=3(mod 4). (44)

THEOREM 4. Under any odd prime p the following equalities are valid:
2 .
Zezm'ﬁp- _ \/5 x.f p =1 (mod 4),
i /P if p=3(mod 4).

=]

Proof. Let us show at first that

2m—
2ooe

VP<I<p

< VP. (45)

Indeed, apply Abel’s summation formula

p—1

Z (g — g1 )V = Z Uz (¥ — Vog1) + Up_1Up — UgUqi1 (46)
T=g+1 z=¢+1
under g = [ﬁ] and
z(z+1)
4p 1
Uy =¢€ , vy =
sin TZ_I;
Since, obvionsly,
21 Lnd __p;l
Up_1Up =€ 4 __(—1)

and
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then from (46) it follows that

2 r,(z-H)
21n L 2m —— 1 1
22 E E € 4 . T T+1
sin - 1 _—
2p ST 2 -

VP<z<p r=g+1
glg+1)
p—1 2m »
— e
+(-1) ? -
in 7 —
But then, observing that under 1 Lz <p—1
1 1 1 1
T i T singl g 2L
smws, sinw % 3 SinTo
we get
271 i—i pt 1 1 1
2 e :
Z Zx sin t= g x 2
VP<z<p T=q+ 2p
1 2
RS S
sin 7 >
Since
2 2p
T < 21 <2
sinrl— gt

the estimate (43) follows.
Now, observing that
2

Re(1—1) Z Z (cosw%+8m7r—>>\/—

1€2<\/P 1€2</P

and using the estimate (45), we get

Cpd 2x
Re(1-1)) e
z=1

2 2
zm'f—‘

, 22 i -
':7>Re(1-i) > ¢ o f(1-d) ) e 4ri

1€2</p VB<z<p

> p-1-V2yp>—p (47)

Let p =1 (mod 4). Then by (44)

? It =—
Ye P =1p (48)



