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Preface

Invariant theory is a subject with a long tradition and an astounding abil-
ity to rejuvenate itself whenever it reappears on the mathematical stage.
Throughout the history of invariant theory, two features of it have always
been at the center of attention: computation and applications. This book is
about the computational aspects of invariant theory. We present algorithms
for calculating the invariant ring of a group that is linearly reductive or fi-
nite, including the modular case. These algorithms form the central pillars
around which the book is built. To prepare the ground for the algorithms,
we present Grobner basis methods and some general theory of invariants.
Moreover, the algorithms and their behavior depend heavily on structural
properties of the invariant ring to be computed. Large parts of the book are
devoted to studying such properties. Finally, most of the applications of in-
variant theory depend on the ability to calculate invariant rings. The last
chapter of this book provides a sample of applications inside and outside of
mathematics.

Acknowledgments. Vladimir Popov and Bernd Sturmfels brought us to-
gether as a team of authors. In early 1999 Vladimir Popov asked us to write
a contribution on algorithmic invariant theory for Springer’s Encyclopaedia
series. After we agreed to do that, it was an invitation by Bernd Sturmfels
to spend two weeks together in Berkeley that really got us started on this
book project. We thank Bernd for his strong encouragement and very helpful
advice. During the stay at Berkeley, we started outlining the book, making
decisions about notation, etc. After that, we worked separately and commu-
nicated by e-mail. Most of the work was done at MIT, Queen’s University at
Kingston, Ontario, Canada, the University of Heidelberg, and the University
of Michigan at Ann Arbor. In early 2001 we spent another week together at
Queen’s University, where we finalized most of the book. Our thanks go to
Eddy Campbell, Ian Hughes, and David Wehlau for inviting us to Queen’s.
The book benefited greatly from numerous comments, suggestions, and
corrections we received from a number of people who read a pre-circulated
version. Among these people are Karin Gatermann, Steven Gilbert, Julia
Hartmann, Gerhard Hif, Jirgen Kliiners, Hanspeter Kraft, Martin Lorenz,
Kay Magaard, Gunter Malle, B. Heinrich Matzat, Vladimir Popov, Jim
Shank, Bernd Sturmfels, Nicolas Thiéry, David Wehlau, and Jerzy Weyman.



viii Preface

We owe them many thanks for working through the manuscript and offering
their expertise. The first author likes to thank the National Science Founda-
tion for partial support under the grant 0102193. Last but not least, we are
grateful to the anonymous referees for further valuable comments and to Ms.
Ruth Allewelt and Dr. Martin Peters at Springer-Verlag for the swift and
efficient handling of the manuscript.

Ann Arbor and Heidelberg, Harm Derksen
March 2002 Gregor Kemper
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Introduction

“Like the Arabian phoenix rising out of the ashes, the theory of in-
variants, pronounced dead at the turn of the century, is once again at
the forefront of mathematics. During its long eclipse, the language of
modern algebra was developed, a sharp tool now at last being applied
to the very purpose for which is was invented.” (Kung and Rota [157))

A brief history. Invariant theory is a mathematical discipline with a long
tradition, going back at least one hundred and fifty years. Sometimes its
has blossomed, sometimes it has lain dormant. But through all phases of its
existence, invariant theory has had a significant computational component.
Indeed, the period of “Classical Invariant Theory”, in the late 1800s, was
championed by true masters of computation like Aronhold, Clebsch, Gor-
dan, Cayley, Sylvester, and Cremona. This classical period culminated with
two landmark papers by Hilbert. In the first [107], he showed that invari-
ant rings of the classical groups are finitely generated. His non-constructive
proof was harshly criticized by Gordan (see page 49 in this book). Hilbert
replied in the second paper [108] by giving constructive methods for finding
all invariants under the special and general linear group. Hilbert’s papers
closed the chapter of Classical Invariant Theory and sent this line of research
into a nearly dormant state for some decades, but they also sparked the de-
velopment of commutative algebra and algebraic geometry. Indeed, Hilbert’s
papers on invariant theory [107, 108] contain such fundamental results as the
Nullstellensatz, the Basis Theorem, the rationality of what is now called the
Hilbert series, and the Syzygy Theorem. The rise of algebraic geometry and
commutative algebra had a strong influence on invariant theory—which never
really went to sleep—as might be best documented by the books by Mumford
et al. {169] (whose first edition was published in 1965) and Kraft [152].

The advent in the 1960s and 1970s of computational methods based on
Grobner bases! brought a decisive turn. These methods initiated the devel-
opment of computational commutative algebra as a new field of research, and
consequently they revived invariant theory. In fact, new algorithms and fast
computers make many calculations now feasible that in the classical period

! It may be surprising that Grobner bases themselves came much earlier. They
appeared in an 1899 paper of Gordan [95], where he re-proved Hilbert’s finiteness
theorem for invariant rings.
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were either simply impossible or carried a prohibitive cost. Furthermore, a
heightened interest in modulo p questions led to a strong activity in modular
invariant theory. An important role in boosting interest in computational in-
variant theory was also played by Sturmfels’s book “Algorithms in Invariant
Theory” [239]. Two other books (Benson [18] and Smith [225]) and numerous
research articles on invariant theory have appeared recently, all evidence of
a field in ferment.

Aims of this book. This book focuses on algorithmic methods in invariant
theory. A central topic is the question how to find a generating set for the
invariant ring. We deal with this question in the case of finite groups and
linearly reductive groups. In the case of finite groups, we emphasize the mod-
ular case, in which the characteristic of the ground field divides the group -
order. In this case, many interesting theoretical questions in invariant theory
of finite groups are still open, and new phenomena tend to occur. The scope
of this book is not limited to the discussion of algorithms. A recurrent theme
in invariant theory is the investigation of structural properties of invariant
rings and their links with properties of the corresponding linear groups. In
this book, we consider primarily the properties of invariant rings that are
susceptible to algorithmic computation (such as the depth) or are of high rel-
evance to the behavior and feasibility of algorithms (such as degree bounds).
We often consider the geometric “incarnation” of invariants and examine,
for example, the question of separating orbits by invariants. In addition, this
book has a chapter on applications of invariant theory to several mathemati-
cal and non-mathematical fields. Although we are non-experts in most of the
fields of application, we feel that it is important and hope it is worthwhile to
include as much as we can from the applications side, since invariant theory,
as much as it is a discipline of its own, has always been driven by what it was
used for. Moreover, it is specifically the computational aspect of invariant
theory that lends itself to applications particularly well.

Other books. Several books on invariant theory have appeared in the
past twenty-five years, such as Springer [231], Kraft [152], Kraft et al. [153],
Popov [193], Sturmfels {239], Benson [18], Popov and Vinberg [194], Smith
[225], and Goodman and Wallach [93]. A new book by Neusel and Smith [181]
has just arrived straight off the press. We hope that our book will serve as
a useful addition to its predecessors. Our choice of material differs in several
ways from that for previous books. In particular, of the books mentioned,
Sturmfels’s is the only one that strongly emphasizes algorithms and compu-
tation. Several points distinguish our book from Sturmfels [239]. First of all,
this book is appearing nine years later, enabling us to include many new de-
velopments such as the first author’s algorithm for computing invariant rings
of linearly reductive groups and new results on degree bounds. Moreover, the
modular case of invariant theory receives a fair amount of our attention in
this book. Of the other books mentioned, only Benson [18], Smith [225], and
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Neusel and Smith [181] have given this case a systematic treatment. On the
other hand, Sturmfels’s book [239] covers many aspects of Classical Invariant
Theory and brings them together with modern algorithms. In contrast, our
book touches only occasionally on Classical Invariant Theory. It is probably
fair to say that most of the material covered in Chapters 3 and 4 (the core
chapters of this book) has never appeared in a book before.

Readership. The intended readership of this book includes postgraduate
students as well as researchers in geometry, computer algebra, and, of course,
invariant theory. The methods used in this book come from different areas of
algebra, such as algebraic geometry, (computational) commutative algebra,
group and representation theory, Lie theory, and homological algebra. This
diversity entails some unevenness in the knowledge that we assume on the
readers’ part. We have nevertheless tried to smooth out the bumps, so a good
general knowledge of algebra should suffice to understand almost all of the
text. The book contains many examples and explicit calculations that we
hope are instructive. Generally, we aim to maximize the benefits of this book
to readers. We hope that it, or at least parts of it, can also be used as a basis
for seminars.

Proofs. When writing this book, we had to decide which proofs of particular
statements to include or omit. Our primary consideration was whether a proof
is, in our view, instructive. Of course, other factors also had some weight, such
as the length of a proof, its novelty, its availability elsewhere in the literature,
the importance of the result, and its relevance to computational matters.
Some degree of arbitrariness is probably unavoidable in such decisions, but
we do hope that our choices contribute to the readability of the book. When
proofs are omitted, we give references.

Organization of the book. Most of the algorithms presented in this book
rely in one way or another on Grobner basis methods. Therefore we decided
to devote the first chapter of this book to introducing Grébner bases and
methods in constructive ideal theory that are built on them. Since most of
the material is also covered in several other books (see the references at the
beginning of Chapter 1), we considered it justifiable and appropriate to give
a concise presentation almost completely “unburdened” by proofs. The aim
is to give the reader a quick overview of the relevant techniques. We cover
most, of the standard applications of Grobner bases to ideal theory, such as
the computation of elimination ideals, intersections, ideal quotients, dimen-
sion, syzygy modules and resolutions, radical ideals, and Hilbert series. In
the section on radical calculation, we present a new algorithm that works
in positive characteristic. Our treatment in Section 1.6 of de Jong’s normal-
ization algorithm goes beyond the material found in the standard texts. We
believe that this algorithm has not previously appeared in a monograph. For
this reason, we have decided to give full proofs in Section 1.6.
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The second chapter gives a general introduction into invariant theory.
The goal is to acquaint the reader with the basic objects and problems and,
perhaps most important, to specify the notation. The presentation is en-
riched with many examples. In this chapter we aim to set the stage for later
developments. In particular, Sections 2.4 through 2.6 are written with ap-
plications to Chapters 3 and 4 in mind. In Section 2.5.2, we present a proof
of the Hochster-Roberts Theorem that is based on the concept of tight clo-
sure. Section 2.3.2 is devoted to separating invariants, a subject rarely or
never mentioned in books on invariant theory. Here we go back to one of the
original purposes for which invariant theory was invented and ask whether
a subset of the invariant ring might have the same properties of separating
group orbits as the full invariant ring, even if the subset may not generate
the invariant ring. As it turns out, it is always possible to find a finite set
with this property, even though the invariant ring itself may not be finitely
generated (see Theorem 2.3.15). This result seems to be new.

Chapters 3 and 4 form the core of the book. In Chapter 3 we look at in-
variants of finite groups. Here the modular case, in which the characteristic of
the ground field divides the group order, is included and indeed emphasized.
The main goal of the chapter is to present algorithms for finding a finite set of
generators of the invariant ring. As the reader will discover, these algorithms
are much more cumbersome in the modular case. The importance of having
algorithms for this case lies mainly in the fact that modular invariant theory
is a field with many interesting problems that remain unsolved. Therefore
it is crucial to be able explore the terrain by using computation. The main
algorithms for computing generators and determining properties of invari-
ant rings are presented in Sections 3.1 through 3.7. Many of the algorithms
were developed by the second author. In Sections 3.10 and 3.11, we discuss
methods applicable to special situations and ad hoc methods. A number of
not strictly computational issues are addressed in Chapter 3, notably degree
bounds. We present a recent proof found by Benson, Fleischmann, and Foga-
rty for the Noether bound that extends to the case of positive characteristic
not dividing the group order, which was left open by Noether’s original ar-
gument. In Section 3.9.3 we give a (very large) general degree bound for the
modular case that depends only on the group order and the dimension of the
representation. Such a bound has not appeared in the literature before. In
Section 3.9.4 we revisit the topic of separating subalgebras and show that the
Noether bound always holds for separating invariants even when it fails for
generating invariants.

The fourth chapter is devoted to invariants of linearly reductive groups.
We present a general algorithm for computing a finite set of generating in-
variants, which was found by the first author. This algorithm makes use
of the Reynolds operator, which is studied systematically in Section 4.5. In
Section 4.6 we discuss how the Hilbert series of the invariant ring can be cal-
culated by using an integral similar to Molien’s formula. As for finite groups,
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degree bounds are also an important issue in the case of reductive groups. In
Section 4.7 we discuss an improvement of a degree bound given by Popov. An
important special case of reductive groups are tori. In Section 4.3 we present
a new algorithm for computing generating invariants of tori.

In Chapter 5 we embark on a tour of several applications of invariant the-
ory. We start with applications to different areas in algebra. Here we discuss
the computation of cohomology rings of finite groups, solving systems of al-
gebraic equations with symmetries, the determination of Galois groups, and
the construction of generic polynomials via a positive solution of Noether’s
problem. Then we move on to other mathematical disciplines. We address
applications to graph theory, combinatorics, coding theory, and dynamical
systems. Finally, we look at examples from computer vision and material
science in which invariant theory can be a useful tool. This chapter is in-
complete in (at least) three ways. First, the scope of fields where invariant
theory is applied is much bigger than the selection that we present here. We
aim to present applications that we consider to be typical and that repre-
sent a certain bandwidth. Second, we are non-experts in most of the fields
addressed in this chapter. Therefore certain inaccuracies are unavoidable in
our presentation, and many experts will probably find that we missed their
favorite article on the subject. We apologize in advance and ask readers to
bring such shortcomings to our attention. Third, we very intentionally limit
ourselves to giving a short presentation of a few selected topics and examples
for each field of application. We want to convey to the reader more a taste of
the subject matter than a comprehensive treatment. So Chapter 5 is meant
to operate a bit like a space probe originating from our home planet (algebra)
and traveling outward through the solar system, visiting some planets and
skipping others, and taking snapshots along the way.

Finally, the book has an appendix where we have compiled some standard
facts about algebraic groups. The material of the appendix is not a prerequi-
site for every part of the book. In fact, the appendix is needed primarily for
the second half of Chapter 4.
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In this chapter we will provide the basic algorithmic tools which will be used
in later chapters. More precisely, we introduce some algorithms of construc-
tive ideal theory, almost all of which are based on Grobner bases. As the
reader will find out, these algorithms and thus Grébner bases literally per-
meate this book. When Sturmfels’ book [239] was published, not much intro-
ductory literature on Grobner bases and their applications was available. In
contrast, we now have the books by Becker and Weispfenning [15}, Adams
and Loustaunau [6], Cox et al. [48], Vasconcelos [250], Cox et al. [49], Kreuzer
and Robbiano [155], and a chapter from Eisenbud [59]. This list of references
could be continued further. We will draw heavily on these sources and restrict
ourselves to giving a rather short overview of the part of the theory that we
require. The algorithms introduced in Sections 1.1-1.3 of this chapter have
efficient implementations in various computer algebra systems, such as Co-
CoA [40], MACAULAY (2) [97), MAGMA [24], or SINGULAR ([99], to name
just a few, rather specialized ones. The normalization algorithm explained in
Section 1.6 is implemented in MACAULAY and SINGULAR.

We will be looking at ideals I C K[z1,...,Z»] in a polynomial ring over
a field K. For polynomials f1,..., fr € K[zi,...,Z,], the ideal generated by
the f; will be denoted by (fi,..., fx)K[z1,...,za] or by (fi,..., fi) if no
misunderstanding can arise. The algorithms in this chapter will be mostly
about questions in algebraic geometry, so let us introduce some basic no-
_ tation. An affine variety is a subset X of the n-dimensional affine space
A" = A" (K) := K™ defined by a set S C K[r;,...,z,] of polynomials as

X =V(S) :={(&1,...,&) € K™ | f(£&1,...,&) =0 for all f € S}.

When we talk about varieties, we usually assume that K is algebraically
closed. (Otherwise, we could work in the language of schemes.) The Zariski
topology on A" is defined by taking the affine varieties as closed sets. An
affine variety (or any other subset of A") inherits the Zariski topology from
A™. A non-empty affine variety X is called irreducible if it is not the union
of two non-empty, closed proper subsets. (In the literature varieties are often
defined to be irreducible, but we do not make this assumption here.) The
(Krull-) dimension of X is the maximal length k of a strictly increasing
chain
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of irreducible closed subsets.

For an affine variety X = V(S), let I be the radical ideal of the ideal
in K[z,,...,2,] generated by S. Then X = V(I), and the quotient ring
K[X] := K[zy,...,z,]/I is called the coordinate ring. X is irreducible if
and only if K[X] is an integral domain, and the dimension of X equals the
Krull dimension of K[X], i.e., the maximal length of a strictly increasing
chain of prime ideals in K[X]. By Hilbert’s Nullstellensatz, we can identify
K[X] with a subset of the ring KX of functions from X into K. Elements from
K[X] are called regular functions on X. If X and Y are affine varieties, a
morphism ¢: X — Y is a mapping from X into Y such that the image of
the induced mapping

¢ KY] KX, frs fog,
lies in K[X].

1.1 Ideals and Grébner Bases

In this section we introduce the basic machinery of monomial orderings and
Grobner bases.

1.1.1 Monomial Orderings

By a monomial in K{z;,...,z,] we understand an element of the form
zi! ---z& with e; non-negative integers. Let M be the set of all monomials.
A term is an expression c¢-t with 0 # ¢ € K and t € M. Thus every
polynomial is a sum of terms.

Definition 1.1.1. A monomial ordering is a total order “>” on M sat-
isfying the following conditions:

(i) t>1forallte M\ {1},
(ii) t1 >ty implies sty > sty for all s,t1,t2 € M.

We also use a monomial ordering to compare terms. A non-zero polynomial
f € K[z1,...,z,] can be written uniquely as f = ct + g such thatt € M,
c € K\ {0}, and every term of g is smaller (with respect to the order “>”)
than t. Then we write

LT(f) =ct, LM(f)=t, and LC(f)=c

for the leading term, leading monomial, and leading coefficient of f.
For f =0, all three values are defined to be zero.



