1

Hl BI]DKS

(SR3ZhR)

DATA SIRUCTURES
OUTSlD[|N JW&\?A

hhhhhhhhhhhhhhhh

%HE,.:*’J

w“ Hi illa—bb(davaﬂﬁ)

B eeur
wHALL

2 R R M B B

i8 4

MR A Eu_?kim(dava}ﬁ)
(FEXAR)

English reprint edition copyright © 2008 by Pearson Education Asia Limited and China
Machine Press.

Original English language title: Data Structures Outside In with Java (ISBN 0-13-198619-8) by
Sesh Venugopal, Copyright © 2007. i

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as
Prentice Hall.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong
Kong SAR and Macau SAR).

453 CRENAR BaPearson Education Asia Ltd ZAUHLR Tk BRI IR . R2HRE
BEEFT, PEBUEFAHTREFHSDEEBHNE.

RTFREARLMEREN (REFETEEFE. RIRNTEREAGEGEBK) #HE
17,

5 E R A Pearson Education (JFAKH MRER) BOLHIRE, THREZASLR
#E.

IR, @RS,
FHHEME JeRTHRARIEES T

APENBIZE . BF: 01-2007-1843
EBEESE (CIP) ¥iE

Biggty. ARRABILB (JavafiR) (FESCRR) / (%) ﬁé‘lﬂtﬁlﬂﬂ]((Venugopal, S.) .
—4bxt: YR Tk HAR$:, 2008.1

(MRS E)

5483 Data Structures Outside In with Java

ISBN 978-7-111-23165-3

1% 0% IO ¥BEHMH-%X OJAVAEE-BFRIt-%X V. TP31L.12
TP312

o LR A PR AR CIPR R (2007) 58205696 5

FUR Tl AR (U aiFRE B EA#225 #BBAFS 100037)
TR BiRE

LR FCALHIRTENR - FEBEACRRITHRT,
20084 1 A 45 AR 1R ENRI '
170mm x 242mm - 32.25F[13k

k2. ISBN 978-7-111-23165-3

FEMT: 55.007T

A, aAET. B, 6, AR
ARg5hek. (010) 68326294

a

T

-

e M e

BARE 8IS

XEEXLEE, BERRKOBHEEMMESERNEZRIE, FASEXES
REENEZENGIBIE T 2EENES, BERIBANESE, FXEAREHEARR
RAATEZEALKEH, BEARE., ERLLHH#ES, XENTLREEETR
kR EFHES, TELERPWE S RIS R SR B FERRATE,
RIS MR EE, ARNBENTHROTEE, THRTE2RNWEE, HKE
BEAME, XBEFEN M, KMEHRASZESE ANKEHRR.

A, F2RELAKRBNESDT, REMUAENTLERRE, HEFLAL
FERAREY, EX3TEILETRMURFBERIE, AR TELEH
MRRERFRM LEAXEIRE, EAREFEEARRMEEE. MEARED
FERT, XEFRIEBRXREXTELFERBRILTERRENSBBH AT
FEBEE 2L, BHik, SI#E—-HEIMEBFHRENBAESREHREILEFTFELY
ERERRAOEDEN, LESHAEN, BRAEMER -RXFHLEZE,

LR Tl R BEEXERARAFRETRNE “HWREIEFTRS . B
1998448, HERATRIRE LEEAKRETHE, BEEMBEM L. 23)LF
HIAWEH, FTl15Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan
Kaufmann% it 7 & £ HRA R T RFWAERR, NEMMBANETRHEM+
¥ 3% H{ Tanenbaum, Stroustrup, Kernighan, Jim Gray% KIfi&RAI—HSHIMELR,
EA “HFEALFHEAS" HERER, fiRE2S]. IRRER. KEALENEE,
WIEAR T X ENSH SO A,

“HEHFREAE” HHETESETEAMEERNMRDRE), BRAERRN
RETHENERBES, CARSSHAE THIFENERMIE, HEBOEEDL
MYXEHEREFENEE, AUEEEARBHSEFERER. €4, “UHHEILH
FNFS” BLHARTE2600 &R, XEEHEREPHILTREFHOM, HHEFS
BRRAAERBHMBEBE, AP 5RBITT T REAER.

BEFPRIRNOS REMBEM R ENRSHEL, BHFRSEINTEILEHA
ERFNHBEA—ANFORER. Ak, EEATHMASHBHBODE, B “i
BHLRRENE" 24, MRENRAIEGT, WBAMTREH “@RBFERBE". A TRIE
XHEABAOBERY, RS TEFBAEEMEMMNRS, ERATWIETH
EREbr, bk, HEk¥. EHHREXE, REKE, EBEKRE. BX
K&, WL K%, PEBHE KR, BWRETLI A%, WRRERE, FEARKE,
RS KK, LRMbE A%, Pk, ﬁ?ﬁi?ﬂ]ﬁk%’\ %{U‘I‘lké\ e

iv

TR, PEEXRERZ2WFAES.OFENERREMFFSE T EHANE
MEBHELFRAR “FREFEAR™, HRMBEEEELMHREE.

EXPEMN SR B F R U ERIMNRBEHSE, SENERHTEILR
HREWHIBZEESITER . KBFL2EMHEAM. 1 T., Stanford, U.C. Berkeley,
C.M. U. FittR k2. AUEETEFRH. BREH, RIERE. i
BHEREH. BEE. REFE, RGETER. BEE AE5NE. BEREE
EAAFLHENZLEBFEOELRE, MESARE—FANHAETRIE
ZF. AHFLR=TEMAR., AREHEL2URNLERAERA. EXEERE
WA AERIREIZ T, RELBETEIRENERPHEERAZ.

REWEE., RN, —ROiIEE. PHROER. RAENRE, SERR
FERMGESE TREMRIE, BRMNPBFERRIERE, HiRBRHELERR
BRI — AR BRI EENE ., SHHRARRNNEERSIER. LEAT
W BN M BA T TR M U SRA THRIE, BAMRKRRGENT:

B, F#b . hzjsj@hzbook.com
BEAEIE. (010) 68995264

BeZbhl: ERWEREEDERELS
BRBc4mEg . 100037

ERESERE

x

IRtE
INEF
e d,
o Ak
F g
X
42 8

(¥cit 2 EI T)

44k
LT
i+
e 2
WA
fi iR
ALR 3%

X £
X &
A
Biadt
e B
xFEX
WA A=

Preface

There are two broad approaches to studying data structures.

One is the “inside-out” approach in which the implementation of the data structure,
i.e., how it is built, is learned either before or in conjunction with its application to problem
solving. In other words, start from the nucleus of the data structure and build outward to
its use in a problem.

The inside-out approach, however, is discordant with the manner in which software
is built in practice out of libraries of objects that are known only through their application
programming interfaces (APIs). Here, the “outside-in” approach becomes the norm: a
component or object is first—and often only—seen via its interface, which characterizes
its behavior and therefore its suitability for a given application. That is, what a component
does precedes how it is built.

Outside-in: From price-tagged interface to implementation

In this book, we are interested in the interface as well as the implementation of data
structures. We follow the outside-in approach to presenting them because it will enable
students to easily apply in practical software development what they learn in class. Our
approach is outlined in the following sequence of steps.

1. Introduce a data structure by narrating its properties and use in applications.
This step familiarizes the student with the characteristic behavior of the data

structure, setting the stage for the encapsulation of data and operations into a Java
class.

2. Formalize the characteristic properties of a data structure by presenting the public
interface of a Java class that implements the data structure.
This step defines the set of operations that may be applied on the data structure,
formulated from the discussion in Step 1. With the interface, there also comes a
“price tag”—the running times of the interface operations.

The price tag is an important consideration in the selection of data structures for an
application. It may be argued that the price tag determination may only be made
after the data structure is implemented. While this is true, the outside-in approach
that is used to build software in practice typically separates the group of people who
work with the outside from the group of people who build the inside. The outside
group must rely on all, and only, that information that comes with the interface.
Having a price tag with the interface is critical for the outside group to evaluate and
choose the best objects possible for the application at hand.

To be consistent with this approach, we have attached the price tag to the interface,
but made a working compromise: in the interface, specify the minimal requirements
of the implementation so that the running times of the operations stay within the
price tag.

We admit that this blurs the separation between interface and implementation,
while recognizing that part of the issue is also that the same person—the student—is

viii Preface

working with both the outside and the inside, albeit at different times. The best
way for the student to approach the interface-implementation separation is to first
imagine that he or she is a client of the data structure, with full cognizance of the
interface and the price tag, and then imagine being the implementor of the data

structure, who has been told what limitations (price tag) to work with to build the
structure.

3. Further illustrate the use of a data structure by writing Java applications using its
class interface presented in Step 2.

This step gives the student a clear practical understanding of how to build an
application in Java using a data structure whose public interface is known, but
whose internal implementation is hidden.

Steps 2 and 3 strongly emphasize the interface of a data structure. By repeatedly
building applications using only the public interface of data structures, the student
gets a practical feel for software development using components whose internal
implementation details need not (and indeed, may not) be available.

4. Design and implement the data structure, i.e., develop the code for the Java class

whose interface was presented in Step 2, analyze the running times of its operations,
and verify them against the price tag.
This step emphasizes code reuse in one of two forms: (a) composition: using previous
data structures as component (Java) objects in building, or composing, a new data
structure, or (b) inheritance: building a new data structure by inheriting from a
previously built data structure (Java class).

While we are following an outside-in approach, this “in” part does not degenerate
into using classes from the Java collections framework. Instead, it is on an equal
footing with the “outside” part, with a detailed understanding of the implementation
so that the student learns all aspects of building data structures, including evaluating
the tradeoffs involved in choosing among a set of candidate implementations.

Apart from providing a consistent pedagogical form, these steps help students to
understand and apply the important object-oriented design principles of encapsulation,
separation of interface from implementation, and code reuse.

Prerequisites in Java

This book assumes a CS1-level background in Java 1.5, with the following specific
coverage: program structure, data types, control structures for decision and repetition,
including the i f, i f-else, for,while, and repeat statements, and arrays. It also assumes
that the student is familiar with the widely used String class.

Chapter 1 is a Java primer on object-oriented programming that starts by assum-
ing this CS1-level background, and introduces objects and classes, inheritance, the
Object class, exceptions, core input and output features, class packaging, and access
control. In the context of input/output, the java.util.StringTokenizer and the
java.util.Scanner (new to Java 1.5) classes are described, with a discussion of their
typical usage.

Preface ix

The primer also introduces specifically design-oriented features, including polymor-
phism, abstract classes, and interfaces. _

The last section discusses the new Java 1.5 generics, an indispensable tool for
building usable and robust data structures. This discussion also details the design and use
of the java.util.ArrayList class, which is a very useful component in implementing
container structures, or collections.

Paths through the book

An essential course focusing on the basic data structures and sorting algorithms, preceded
by reviewing/learning the required Java tools and techniques in two weeks, could cover
Chapters 1-10, skipping Section 10.7 (AVL Tree), and Chapters 12-13, skipping Sections
13.3 (Heapsort) and 13.4 (Radix sort). '

A course that could conduct the Java due diligence in lab instead of lecture could
add Heap from Chapter 11, and Heapsort and Radix sort from Sections 13.3 and 13.4
respectively.

Advanced material could be incorporated by covering AVL trees from Section 10.7,
and Chapters 14 and 15 on graphs. In case of time limitation, Chapter 14 would suffice to
familiarize students with graph algorithms, while leaving out the implementation details
of Chapter 15.

A two-course sequence could cover the entire book, including much of the Java
background material in Chapter 1. The first course could cover Chapters 1 through 9, up
to and including Binary Tree/General Tree, and the second could cover the rest of the
chapters, starting with Binary Search Tree/AVL Tree of Chapter 10.

Pedagogical structures.

o Every chapter, except the preliminary Chapters 1 and 2, begins with a list of
Learning Objectives. This gives a precise ovetview of the learning material in the
chapter.

¢ Key points in every chaptér are presented in the following format:
These key points are also itemized in the end-of-chapter summary.

o Public interfaces of Java classes for data structures are presented as figures in the
following format:

Class classname

Constructors

Signature and description of each public constructor
Methods

Running time (price tag), signature, and description of each public method

x Preface

o Every complete Java class implementation is presented in the following style:

Class File number Class File Name

Class outline, with some constructors/methods possibly filled in

¢ Throughout the book, we use algorithms written in pseudo-code, providing language-
independent descriptions of processes. These algorithms appear with a header of
the form:

Algorithm name_of_algorithm

The notations used in the pseudo-code are self-explanatory.

o Every chapter except Chapter 2 concludes with a listing of Summary points. These
include the key points in the chapter, as well as other important points to remember,
including specific Java issues.

o Every chapter except Chapter 2 tests the student’s understanding of the material in
the form of exercises and programming problems:

o Exercises, which are, for the most part, conceptual language-independent
material, especially focusing on work-through reviews, abstract design issues,
and time-space analysis.

o Programming Problems, which focus on building Java classes, especially focus-
ing on design/implementation alternatives and code reuse.

Acknowledgments

I would like to thank the Data Structures teams in the Computer Science department at
Rutgers University with whom I have taught this course for over more than a decade,
and who have provided direct as well as indirect input that has helped shape this book.
Special thanks to current and former faculty members Diane Souvaine, Ken Kaplan,
Miles Murdocca, and Don Smith for discussing and reviewing the content.

Many thanks to my friends and former graduate student colleagues Nathalie
Japkowicz, George Katsaros, and Dan Arena for carefully reviewing the initial C++ draft,
Gabriela Hristescu for providing help with typesetting aspects, and Sri Divakaran for
reviewing parts of the Java manuscript. Several students in my data structures class of
Fall 1997 read the first complete draft of this book and gave valuable feedback. Thanks
to them all, especially Alex Chang, for being such a tremendously loyal fan of the book.
Thanks also to the students in Fall 2002 and Spring 2003 who pointed out various errors
and other shortcomings in an earlier version that was customized for Rutgers.

Thanks are also due to the Data Structures facuity at Middlesex County College,
and my former colleagues when I was working at Lucent Technologies with whom 1
discussed the material in this book at some point or the other. Special thanks to Tom
Walsh at Lucent for cheering me on.

Thanks to all the reviewers who helped make this a better book: Barbara Goldner
at North Seattle Community College, Mark Llewellyn at University of Central Florida,
Chris Dovolis at University of Minnesota, Iyad A. Ajwa at Ashland University, Minseok
Kwon at Rochester Institute of Technology, George Rouskas at North Carolina State

Preface xi

University, Roxanne Canosa at Rochester Institute of Technology, Mary Horstman at
Western Illinois University, Ray Whitney at University of Maryland, University College,
and Robert P. Burton at Brigham Young University.

The editorial team at Prentice Hall have supported me in all aspects of this project.
Thanks to my editor Tracy Dunkelberger for believing that this book project would be
a worthwhile enterprise, for her cheery confidence that kept me on an even keel, and
for making this book real. Thanks to Christianna Lee and Carole Snyder for guiding me
through the review process, and for responding to all my questions with patience and
grace.

John Shannon, Irwin Zucker, Camille Trentacoste and the production staff at
Laserwords helped correct the numerous typographical and grammatical errors that had
crept into the book, and formatted the pages to make sure they were presentable. Due
to their diligence and expertise, you, dear reader, are spared my inadvertent mistakes or
plain ignorance in these areas. For this, my sincere appreciation and thanks to all of them.

I am deeply grateful to the members of my family and that of my wife’s for their
advice and encouragement, and for being there to pep me up when things didn’t seem to
be going too well at times. I would specially like to thank my parents, my mother-in-law,
and my wife’s grandparents for their constant support. Above all, thanks to my father,
C.N. Venugopal, and to my wife’s grandfather, Dr. Hayrettin Tanacan, for their special
participation. Although both of them are far removed from computers in general, and
Data Structures in particular, they took the pains to go through my book to try and
understand exactly what it was that I was trying to write that was taking so long!

Thanks to my wife, Zehra Tulin, for her help in many ways during the writing of this
book, and more importantly, for her love and support at all times. And an extra big hug
to my son Amar whose unfailing pride in his dad spurs me on.

Finally, thanks to all the students who took my classes in various subjects at Rutgers
University and Middlesex County College over the years. They have been instrumental
in my growth as an educator, and I hope this book can serve as a token of my gratitude to
each and every one of them.

In closing, I would be very happy to hear from you about this book—what you liked,
what you did not care for, and the errors you found, if any. You can reach me by email at
sesh_venugopal@rutgers.edu. Your feedback will help me serve you better.

Sesh Venugopal

Piscataway, New Jersey
November, 2006

List of Class Files

41
4.2
4.3
4.4
4.5
5.1
5.2
6.1
6.2
6.3
7.1
7.2
7.3
7.4
9.1
9.2
9.3
9.4
10.1
11.1
11.2
113
114
115
11.6
13.1
151
15.2
153

Expense.java.........................: 128
ExpenseListjava 131
ItemExpensejava 134
LinkedListjava 146
Listjava e 151
OrderedListjava e 179
OrderViolationExceptiongjava 182
Jobjava 195
PrintQueuejava e 196
Quetejava. e 201
StatusKeeperjava e 216
StackKeeperjava e 217
IllegalExpressionExceptionjava 220
Stackjava e e 222
Huffmanjava i 275
BinaryTreejava 283
TreeViolationExceptionjava, 284
Visitorjava e 287
BinarySearchTreejava 316
Processjava e 355
ProcessSource.java e e 356
Processor.jéva 357
BusyInterruptionExceptionjava 359
Schedulerjava L e 359
Heap.java e 366
Quicksortjavao e 414
Neighborjava e 458
VISIOTjava ot e e e e 464

DFSjava e 465

xiv List of Class Files

154
15.5
15.6
15.7
15.8
159
15.10
15.11
15.12

TopVisitorjava vt vt e 467
DSFTopsort.java ittt 468
ConnVisitorjavaottt 469
DFSCONnCOmMpPjava v v v v v e it e e e 470
WeightedNeighborjava 472
ShortestPathsjavay 473
VEMEXJAVA . . . o o ottt i e e e 471
DirGraphjavao i 478
UndirGraphjava e 480

Contents

Preface
List of Class Files
1 Object-Oriented Programming in Java
1.1 Objects and Encapsulation
111 Objects oo vt e
1.12 Lifetime, State,and Messages
1.1.3 ClientsofanObject o
1.1.4 Separation of Interface from Implementation
12 ClaSSES « v v v o v e e e e e e e e e e e e e e
121 StateandBehavior 0 0 0o
122 MethodOverloading,
1.2.3 Object Creation, Constructors, Garbage Collection
124 MethodInvocation
1.2.5 StaticFieldsandMethods
1.2.6 ObjectReferences.
13 Inheritance L e e
13.1 SuperclassandSubclass oo ool
1.3.2 Inherited and Specialized Fields
1.3.3 CONSLIUCIOTS . .« v v v v e ottt e e it et e e e e e e o
134 ObjectCreation
1.3.5 Inherited and Specialized Methods
1.3.6 MethodOverriding« ...
14 TheObjectClass e e e e e e e
141 TheequalsMethod,
142 ThetoStringMethod
143 ThecloneMethod
1.5 EXCEPHONS . . . v v vttt e
1.5.1 Interpreting an Exception Message
152 Homegrown ErrorHandling
153 ThrowinganException
1.54 CatchinganException
155 ExceptionClass
16 InmputandQutput’.
161 Terminal-DrivenIO. o
1.6.2 File-BasedIO
1.63 StringTokenizing
1.64 WritinganExceptionClass.
1.7 ClassPackagesttt

1.71 JavaPackages

xvi Contents

1.72 Organizing Packages - 50
17.3 Name Conflict Resolution 54
18 AccessControl 55
181 Private Accesso i 55
182 Package Access, 56
1.83 Protected Access 56
184 PublicAccess i 56
185 AnExample e e e 57
1.9 Polymorphism 57
19.1 PolymorphicReference. 58
192 Castingupthe ClassHierarchy 59
193 Casting Downthe ClassHierarchy 60
194 TheinstanceofOperator 61
1.10 ADbStract CIasses v v v i vt et e 62
1.10.1 AbstractClassShape 62
1.10.2 AbstractClassProperties 63
111 AGameParkExample 64
112 Interfaces v v v it e e 67
1.12.1 The Java interfaceConstruct 67
1.12.2 Implementing an Interface 67
1123 InterfaceasaType, 68
1.12.4 The NeedforInterfaces 68
1.12.5 Extendinglnterfaces 70
103 GERETICS « « v v v v v e et e e e e e e e 70
1.13.1 Using java.util.ArrayList for Collections 72
1.13.2 The java.util.ArrayList Public Interface 73
1.13.3 Implementinga GenericClass 74
1.13.4 Implementing a Generic Interface 75
1.13.5 Static Template Methods 78
114 SUMMATY o it e 80
115 EBXEICISES . v v v v v v i i e e ettt e e e 82
1.16 ProgrammingProblems e e e 84
The Big Picture 88
2.1 What Are Data Structures? e 89
2.2 What Data Structures DoWe Study? 89
2.3 What Are Abstract Data Types? oL 92
2.4 Why OOP and Java for Data Structures? 94
2.5 How Do I choose the Right Data Structures? 96
Efficiency of Algorithms 99
3.1 Polynomial Arithmetic: A Running Example 99
32 BasicOperationst 101
33 InputSize e 103
34 Asymptotic Growthof Functions 104
35 OrderandBigOh 106

351

Contents xvii

Typical Running-Time Orders 108

352 Multi-VariableOrder 110

353 RelativeOrder. ittt . 111

354 Order Arithmetic 112

36 Worst-Caseand AVerage v v iieeunnnnn.. 112
37 Summary e e 115
38 EXercises e 116
Unordered List 119
41 Unordered List Properties 120
42 SequentialSearch oL 121
421 AverageCase Analysis 122

422 Rearranging Data Based on Search Patterns 124

43 ALIStClass i it e e e 125
44 AnExpenseListClassUsinglist 127
441 ExpenseClassInterface 128

442 ExpenseClass it e 128

443 ExpenselListClassInterface 130

444 Expenselist Class Implementation 131

4.4.5 Equality of Objectsand Searching 133

45 LinkedList e 137
451 Node e e 138

452 Imsertion e e 139

453 Deletion e 140

454 ACCESS . . v v i e e e e 141

455 CircularLinkedList. 142

46 AlinkedListClass i e 145
47 ListClassImplementation 150
48 Summary e 152
49 EXEICISES o v o v e e e e e e e e e 153
410 ProgrammingProblems 155
Ordered List 159
51 Introduction e 160
52 BinmarySearch. 161
521 DivideinHalf o oL 161

522 Algorithm e 162

5.3 Ordering: Interface java.lang.Comparable 164
54 AnOrderedList Classttt 166
55 MergingOrderedLists. 170
551 Two-Finger Merge Algorithm 171

5.6 List Consolidation Using OrderedList 174
561 Merger: AUtllityClass 175

562 AConsolidationClass0 0.... 177

57 OrderedList Class Implementation 179
58 Summary e 182

xviii Contents

59 EXEICISES o vt it e e e e e e
5.0 ProgrammingProblems,
Queue

61 QueueProperties.

6.2 UNIXPrintQueuettt

63 AQueueClass

6.4 APrintQueueClassUsingQueue

6.5 Queue Class Implementation

6.5.1 Design 1: Using Array-Based Storage

6.52 Design2: Using Linkedlist

6.6 SUMMATY . . . oot vttt v it e e et e e e e

6.7 EXEICISES . o v v v v v v et et e e e e e

6.8 ProgrammingProblems o

7 Stack

7.1 Stack Properties i

7.2 Stack Applicationso

721 ParenthesesMatching

7.2.2 Postfix Expression Evaluation

723 InfixtoPostfix Conversion

73 AStackClass e

74 A Postfix Expression Evaluation Package

741 Class PostfixEvaluator

742 Class StatusKeepery

743 ClassStackKeeper

744 Class PostfixEvaluator Implementation

7.5 Stack Class Implementation

: 751 Design 1: Array List for Storage

7.52 Design 2: Linked List for Storage

7.6 SUMMATY . o . v vt i e i et

77 BXEICISES . o o v v o et e e e e

78 Programming Problems
Recursion

81 RecursiveDefinitions e

811 LiSt . o e e e e s

812 OrderedListot e e

8.1.3 Factorial Functiono i e

814 FibonacciSequence

8.2 Recursive Programs and BackingOut

821 Computing the Factorial

8.2.2 Computing the Fibonacci Sequence

823 RecursionwithLinkedLists

83 Recursion on an Array; BinarySearch oo

8.4 Towers of Hanoi: An Application

