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Preface

There are two broad approaches to studying data structures.

One is the “inside-out” approach in which the implementation of the data structure,
i.e., how it is built, is learned either before or in conjunction with its application to problem
solving. In other words, start from the nucleus of the data structure and build outward to
its use in a problem.

The inside-out approach, however, is discordant with the manner in which software
is built in practice out of libraries of objects that are known only through their application
programming interfaces (APIs). Here, the “outside-in” approach becomes the norm: a
component or object is first—and often only—seen via its interface, which characterizes
its behavior and therefore its suitability for a given application. That is, what a component
does precedes how it is built.

Outside-in: From price-tagged interface to implementation

In this book, we are interested in the interface as well as the implementation of data
structures. We follow the outside-in approach to presenting them because it will enable
students to easily apply in practical software development what they learn in class. Our
approach is outlined in the following sequence of steps.

1. Introduce a data structure by narrating its properties and use in applications.
This step familiarizes the student with the characteristic behavior of the data

structure, setting the stage for the encapsulation of data and operations into a Java
class.

2. Formalize the characteristic properties of a data structure by presenting the public
interface of a Java class that implements the data structure.
This step defines the set of operations that may be applied on the data structure,
formulated from the discussion in Step 1. With the interface, there also comes a
“price tag”—the running times of the interface operations.

The price tag is an important consideration in the selection of data structures for an
application. It may be argued that the price tag determination may only be made
after the data structure is implemented. While this is true, the outside-in approach
that is used to build software in practice typically separates the group of people who
work with the outside from the group of people who build the inside. The outside
group must rely on all, and only, that information that comes with the interface.
Having a price tag with the interface is critical for the outside group to evaluate and
choose the best objects possible for the application at hand.

To be consistent with this approach, we have attached the price tag to the interface,
but made a working compromise: in the interface, specify the minimal requirements
of the implementation so that the running times of the operations stay within the
price tag.

We admit that this blurs the separation between interface and implementation,
while recognizing that part of the issue is also that the same person—the student—is
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working with both the outside and the inside, albeit at different times. The best
way for the student to approach the interface-implementation separation is to first
imagine that he or she is a client of the data structure, with full cognizance of the
interface and the price tag, and then imagine being the implementor of the data

structure, who has been told what limitations (price tag) to work with to build the
structure.

3. Further illustrate the use of a data structure by writing Java applications using its
class interface presented in Step 2.

This step gives the student a clear practical understanding of how to build an
application in Java using a data structure whose public interface is known, but
whose internal implementation is hidden.

Steps 2 and 3 strongly emphasize the interface of a data structure. By repeatedly
building applications using only the public interface of data structures, the student
gets a practical feel for software development using components whose internal
implementation details need not (and indeed, may not) be available.

4. Design and implement the data structure, i.e., develop the code for the Java class

whose interface was presented in Step 2, analyze the running times of its operations,
and verify them against the price tag.
This step emphasizes code reuse in one of two forms: (a) composition: using previous
data structures as component (Java) objects in building, or composing, a new data
structure, or (b) inheritance: building a new data structure by inheriting from a
previously built data structure (Java class).

While we are following an outside-in approach, this “in” part does not degenerate
into using classes from the Java collections framework. Instead, it is on an equal
footing with the “outside” part, with a detailed understanding of the implementation
so that the student learns all aspects of building data structures, including evaluating
the tradeoffs involved in choosing among a set of candidate implementations.

Apart from providing a consistent pedagogical form, these steps help students to
understand and apply the important object-oriented design principles of encapsulation,
separation of interface from implementation, and code reuse.

Prerequisites in Java

This book assumes a CS1-level background in Java 1.5, with the following specific
coverage: program structure, data types, control structures for decision and repetition,
including the i f, i f-else, for,while, and repeat statements, and arrays. It also assumes
that the student is familiar with the widely used String class.

Chapter 1 is a Java primer on object-oriented programming that starts by assum-
ing this CS1-level background, and introduces objects and classes, inheritance, the
Object class, exceptions, core input and output features, class packaging, and access
control. In the context of input/output, the java.util.StringTokenizer and the
java.util.Scanner (new to Java 1.5) classes are described, with a discussion of their
typical usage.
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The primer also introduces specifically design-oriented features, including polymor-
phism, abstract classes, and interfaces. _

The last section discusses the new Java 1.5 generics, an indispensable tool for
building usable and robust data structures. This discussion also details the design and use
of the java.util.ArrayList class, which is a very useful component in implementing
container structures, or collections.

Paths through the book

An essential course focusing on the basic data structures and sorting algorithms, preceded
by reviewing/learning the required Java tools and techniques in two weeks, could cover
Chapters 1-10, skipping Section 10.7 (AVL Tree), and Chapters 12-13, skipping Sections
13.3 (Heapsort) and 13.4 (Radix sort). '

A course that could conduct the Java due diligence in lab instead of lecture could
add Heap from Chapter 11, and Heapsort and Radix sort from Sections 13.3 and 13.4
respectively.

Advanced material could be incorporated by covering AVL trees from Section 10.7,
and Chapters 14 and 15 on graphs. In case of time limitation, Chapter 14 would suffice to
familiarize students with graph algorithms, while leaving out the implementation details
of Chapter 15.

A two-course sequence could cover the entire book, including much of the Java
background material in Chapter 1. The first course could cover Chapters 1 through 9, up
to and including Binary Tree/General Tree, and the second could cover the rest of the
chapters, starting with Binary Search Tree/AVL Tree of Chapter 10.

Pedagogical structures.

o Every chapter, except the preliminary Chapters 1 and 2, begins with a list of
Learning Objectives. This gives a precise ovetview of the learning material in the
chapter.

¢ Key points in every chaptér are presented in the following format:
These key points are also itemized in the end-of-chapter summary.

o Public interfaces of Java classes for data structures are presented as figures in the
following format:

Class classname

Constructors

Signature and description of each public constructor
Methods

Running time (price tag), signature, and description of each public method
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o Every complete Java class implementation is presented in the following style:

Class File number Class File Name

Class outline, with some constructors/methods possibly filled in

¢ Throughout the book, we use algorithms written in pseudo-code, providing language-
independent descriptions of processes. These algorithms appear with a header of
the form:

Algorithm name_of_algorithm

The notations used in the pseudo-code are self-explanatory.

o Every chapter except Chapter 2 concludes with a listing of Summary points. These
include the key points in the chapter, as well as other important points to remember,
including specific Java issues.

o Every chapter except Chapter 2 tests the student’s understanding of the material in
the form of exercises and programming problems:

o Exercises, which are, for the most part, conceptual language-independent
material, especially focusing on work-through reviews, abstract design issues,
and time-space analysis.

o Programming Problems, which focus on building Java classes, especially focus-
ing on design/implementation alternatives and code reuse.
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