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Preface

This book may be considered as the continuation of the monographs [Tri3] and
[Triy] with the same title. It deals with the theory of function spaces of type
B, and Fj as it stands at the beginning of this century. These two scales of
spaces cover many well-known spaces of functions and distributions such as Holder-
Zygmund spaces, (fractional and classical) Sobolev spaces, Besov spaces and Hardy
spaces.

On the one hand this book is essentially self-contained. On the other hand we
concentrate principally on those developments in recent times which are related
to the nowadays numerous applications of function spaces to some neighboring
areas such as numerics, signal processing and fractal analysis, to mention only a
few of them.

Chapter 1 in [Triv] is a self-contained historically-oriented survey of the function
spaces considered and their roots up to the beginning of the 1990s entitled

How to measure smoothness.

Chapter 1 of the present book has the same heading indicating continuity. As far
as the history is concerned we will now be very brief, restricting ourselves to the
essentials needed to make this book self-contained and readable. We complement
[Triy], Chapter 1, by a few points omitted there. But otherwise we jump to the
1990s, describing more recent developments. Some of them will be treated later
on in detail. In other words, [Triy|, Chapter 1, and Chapter 1 of the present
book complement each other, providing a sufficiently comprehensive picture of
the theory of the spaces By, and F,, and their roots from the beginning up to
our time. But quite obviously as far as very recent topics are concerned we are
somewhat selective, emphasizing those developments which are near to our own
interests.

This book has 9 chapters. Chapter 1 is the indicated self-contained survey.

Chapters 2 and 3 deal with building blocks in (isotropic) spaces of type B,, and
Fj, in R", especially with (non-smooth) atoms (Chapter 2) and with wavelet
bases and wavelet frames (Chapter 3). We discuss some consequences: pointwise
multiplier assertions, positivity properties and local smoothness problems.



xii Preface

In recent times there is a growing interest in function spaces in (bounded) Lipschitz
domains in R™. Here we split our presentation, collecting some old and a few new
results in the introductory Section 1.11 and returning to this subject in greater
detail in Chapter 4.

Wavelet representations of anisotropic function spaces and of weighted function
spaces on R™ will be treated in Chapters 5 and 6, respectively.

Chapter 7 might be considered as the direct continuation of our studies in [Trid]
and [Trie] about fractal quantities of measures and spectral assertions of fractal
elliptic operators.

Finally in Chapters 8 and 9 we develop a new theory for function spaces on quasi-
metric spaces and on sets.

Formulas are numbered within the nine chapters. Furthermore, within each
of these chapters all definitions, theorems, propositions, corollaries, remarks and
examples are jointly and consecutively numbered. Chapter n is divided in sub-
sections n.k, which occasionally are subdivided in subsubsections n.k.l. But when
quoted we refer simply to Section n.k or Section n.k.l instead of Subsection n.k
or Subsubsection n.k.l, respectively.

It is a pleasure to acknowledge the great help I have received from my col-
leagues and friends round the world who made valuable suggestions which have
been incorporated in the text. This applies in particular to Chapter 1 of this book.
I am especially indebted to Dorothee D. Haroske for her remarks and for producing
all the figures. Last, but not least, I wish to thank my friend David Edmunds in
Brighton who looked through the whole manuscript and offered many comments.

Jena, Spring 2006 Hans Triebel
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Chapter 1

How to Measure Smoothness

1.1 Introduction

This chapter has the same title as the historically-oriented survey in [Tri7y], Chap-
ter 1. But our aim now is somewhat different. As far as the background is concerned
we will be very brief, restricting ourselves to the bare minimum and referring to
[Triy], Chapter 1, for more details. We are now mainly interested in a description
of the theory of function spaces from the 1990s up to our time. Quite obviously
we are somewhat selective, emphasizing topics of our own interest. Furthermore
we prepare to some extent what follows in the subsequent chapters.

The function spaces Bj, and Fj, on R™ and on domains with respect to the full
range of the parameters

seR, 0<p<oo, 0<qg<oo, {(1.1)

were introduced between 1959 and 1975. They cover many well-known classical
concrete function spaces having their own history. In Section 1.2 we give a corre-
sponding short list. These two scales of spaces and their special cases attracted a
lot of attention and have been treated systematically with numerous applications
given. We mention in particular the following books, reflecting also the develop-
ment of this theory: [Sob50], [Nik77] (first edition 1969), [Ste70], [BIN75], [Pee76],
[Trie] (1978), [Trif] (1983) and [Triy] (1992). Special aspects but related to our in-
tentions have been studied in [AdF03] (Sobolev spaces; first edition 1975), [Maz85]
(Sobolev spaces), [Zie89] (Sobolev spaces) and [ST87] (periodic spaces, anisotropic
spaces and spaces with dominating mixed smoothness). The two surveys [BKLN88|
and [KuN88]| cover in particular the Russian literature. More recent developments
of the spaces B,, and Fy, in the last decade may be found in [ET96], [RuS96],
[AdH96], [Trid] (1997), [Trie] (2001), [HeNO4] and [Har06]. More detailed references
especially to the original papers may be found in [Trivy], Chapter 1.
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The recent theory of the above function spaces is characterised by the extensive
use of building blocks such as atoms, quarks, and wavelets. Hence it seems to be
appropriate to complement the above literature by some more specific references.
Atomic decompositions of the spaces Bj, and Fj;, go back to [FrJ85] and [FrJ90].
Descriptions are also given in [FJW91], [Tor91], [Triv], [ET96], and [Trid], Section
13. The theory of subatomic or quarkonial decompositions has been developed in
[Trid] and, in greater detail, in [Trie]. Wavelet expansions (bases or frames) are
a fashionable subject, preferably with respect to Lg-spaces or L,-spaces where
1 < p < oo. Other types of function spaces such as classical Sobolev or Besov
spaces are also treated but not as a major topic. We refer to [Mey92], [Dau92] and
[W0j97]. In this book the theory of diverse building blocks such as atoms, quarks,
wavelet bases and wavelet frames, and its applications to some problems of the
spaces By, and Fj, play a central role, both in this introductory survey and in
the subsequent chapters.

1.2 Concrete spaces

The systematic study in this book begins with Chapter 2. Then we collect the
notation needed in the sequel in detail. On this somewhat preliminary basis we list
a few special cases of the spaces B, (R") and F}, (R") without further comments.
In particular we postpone the (Fourier-analytical) definition of these spaces to
the following Section 1.3. Our aim is twofold. First we wish to substantiate what
has been said in Section 1.1. Secondly, as far as the classical function spaces are
concerned we fix our notation. Of course, R" is Euclidean n-space and L,(R") is
the usual complex Lebesgue space with respect to Lebesgue measure. Otherwise
we use standard notation. In case of doubt one might consult the list of symbols at
the end of the book and the references given there. We will be brief. More details
may be found in [Trif], especially Section 2.2.2, pp. 35-38, and [Triy], especially
Chapter 1.

(i) Let 1 < p < co. Then

FO,(R™) = Ly(R™). (1.2)
This is a Paley-Littlewood theorem, see [Trif], Section 2.5.6, pp. 87-88.
(ii) Let 1 < p < oo and s € Ny. Then

p2(R") = Wy(R") (1.3)

are the classical Sobolev spaces, usually normed by

IF W@l = [ > IDfIL,®™)|? | . (1.4)

la|<s

This generalises assertion (i). We refer again to [Trig], Section 2.5.6, pp.
87-88.
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(iii)

Let o € R. Then .
L: fo(©F) (15)

with (€) = (1 + |£|?)/2, is a one-to-one map of the Schwartz space S(R")
onto itself and of the space of tempered distributions S’(R™) onto itself. Here

fand fV are the Fourier transform of f and its inverse, respectively. Then I,
is a lift for the spaces Bp,(R") and Fj5 (R") with s € R, 0 <p < o0 (p < o0
for the F-scale), 0 < g < oo:

I,B;,(R") = By, °(R") and I,Fy (R") = F; °(R") (1.6)

(equivalent quasi-norms), [Trif], Section 2.3.8, pp. 58-59. In particular, let

Hy(R™) = I_sL,(R™), seR, 1<p<oo. (1.7)
Then one gets by (1.2), (1.3), and (1.6),
H,;(R™) = Fj»(R"), seER, 1<p<oo, (1.8)
and
Hy(R") =W, (R") if s€Np and 1<p<oo. (1.9)

We call Hy(R") Sobolev spaces (sometimes denoted as fractional Sobolev
spaces or Bessel potential spaces) and its special cases (1.9) with (1.4) clas-
sical Sobolev spaces.
We denote

C*(R™) = BS . (R™), s €R, (1.10)

as Holder-Zygmund spaces. Let

(ALS) (2) = flz+h) = f(z), (AF'S) (@) = A (ALS) (@),  (1.11)

where z € R, h € R", | € N, be the iterated differences in R”™. Let 0 < s <
m € N. Then

I£1C°R™)lm = up |f(z)[ + sup [R|~* |AF" f ()] (1.12)

where the second supremum is taken over all z € R™ and h € R" with
0 < |h| <1, are equivalent norms in C¥(R™). For more details we refer again
to [Trif], Sections 2.2.2, 2.5.12. Hence if s > 0 then C*(R"™) are the well-
known Hélder-Zygmund spaces. We extend this notation to all s € R.

Assertion (iv) can be generalised as follows. Once more let 0 < s < m € N
and 1 <p<oo,1<¢q<o00. Then

£ 1Bpg(R™)|lm = [If |Lp(R™)]l
1/q
dh (1.13)

o W A M T

[h|<1
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(with the usual modification if ¢ = co) are equivalent norms in B, (R™). As
for details we refer to [Trif], Sections 2.2.2, 2.5.12. These are the classical
Besov spaces.

Remark 1.1. There are further concrete spaces which fit in the scales Bj, (R™) and
F;,(R™). For example, the (inhomogeneous) Hardy spaces h,(R") with 0 < p < 0o
can be identified with Fz?2 (R™). Furthermore for all of the above spaces one has
numerous equivalent norms and characterisations. We refer to the literature in
Section 1.1 and in particular to [Tria], [Trif], [Trivy].

1.3 The Fourier-analytical approach

Recall that this introductory first chapter should be seen in continuation of Chap-
ter 1 in [Triy] with the same title. We do not repeat the history presented there.
Just on the contrary, we restrict ourselves to those ingredients needed later on and
which are the basis of the theory of the spaces B,, and Fj, up to recent times. In
particular from now onwards we incorporate immediately distinguished results of
the last decade.

We use now standard notation which will be detailed later on beginning with
Chapter 2. In case of doubt one may consult the list of symbols at the end of
the book and the references given there. In particular, S(R™) and S’(R"™) are the
Schwartz space of all complex-valued rapidly decreasing C* functions on R", and
the dual space of all tempered distributions. The Fourier transform of ¢ € S(R")
is denoted by @ or Fy. As usual, ¢V and F~l¢ stand for the inverse Fourier
transform. Both F and F~! are extended to S’(R™) in the standard way. Let
©o € S(R™) with

wo(z) =11if |z| <1 and o(y) =0if |y| > 3/2, (1.14)
and let
or(x) = po(27%z) — po(27 % 12), zeR", keN (1.15)
Then, since
les igoj(m) for all z € R, (1.16)
=0

~

the ¢; form a dyadic resolution of unity in R™. Recall that (¢;f)" is an entire

e

analytic function on R" for any f € S’(R™). In particular, (¢; f)¥(z) makes sense
pointwise.

Definition 1.2. Let ¢ = {‘/’j};"io be the dyadic resolution of unity according to
(1.14)—(1.16).
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(i) Let 0 <p<o00,0<g< o0, s€ER, and

1/q
1f 1B Rl = | D22 (05.5) IR (1.17)
j=0
(with the usual modification if ¢ = oo ). Then
B3, (R") = {f € S'(R") : ||[f|B, (R, <o0}.  (L18)
(ii) Let 0 <p < o0, 0< g< o0, s €R, and
- 1/q
IF 1E5g Rl = | { 220 HVOIT | ILp(R™) (1.19)
§=0
(with the usual modification if ¢ = 00). Then
FpR") ={f e SR") : |fI|F5R™), < oo}. (1.20)

Remark 1.3. The history of these definitions may be found in [Trivy], Section 1.5,
especially on p. 29, which will not be repeated here. Some distinguished special
cases have been listed in the preceding Section 1.2. The huge corresponding lit-
erature, mostly books, may be found in Section 1.1. A systematic study of these
spaces in the above generality has been given in [Trif], [Triv], and more recently
in [Trid], [Trie], including many references.

It is convenient to complement these definitions by some maximal functions. Again
let ¢ = {p;}52, be the above resolution of unity. Then we introduce the maximal
functions

~

(@i )Y (z — )|

= , ) € S'(R"), a>0. 1.21
yern 1+ [|27y[® d ®") (21

Maximal functions play a crucial role in diverse types of function spaces as demon-
strated in [Ste93]. The above version and its use in connection with the spaces
introduced in the definition goes back to J. Peetre, [Pee75], [Pee76]. But other-
wise we refer to [Trif], [Triy] for history and literature. Recall that (1.21) always
makes sense, accepting that the right-hand side might be infinite. More precisely:
Let ¢ € S(R™) and f € S/(R™). Then for z € R",

(o)) = f(plz—-))
= /‘P(m —y) f(y)dy = /cp(y) flz—y)dy (1.22)

R™ R™



