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Preface

Complex geometry is a highly attractive branch of modern mathematics that
has witnessed many years of active and successful research and that has re-
cently obtained new impetus from physicists’ interest in questions related to
mirror symmetry. Due to its interactions with various other fields (differential,
algebraic, and arithmetic geometry, but also string theory and conformal field
theory), it has become an area with many facets. Also, there are a number of
challenging open problems which contribute to the subject’s attraction. The
most famous among them is the Hodge conjecture, one of the seven one-million
dollar millennium problems of the Clay Mathematics Institute. So, it seems
likely that this area will fascinate new generations for many years to come.

Complex geometry, as presented in this book, studies the geometry of
(mostly compact) complex manifolds. A complex manifold is a differentiable
manifold endowed with the additional datum of a complex structure which is
much more rigid than the geometrical structures in differential geometry. Due
to this rigidity, one is often able to describe the geometry of complex manifolds
in very explicit terms. E.g. the important class of projective manifolds can, in
principle, be described as zero sets of polynomials.

Yet, a complete classification of all compact complex manifolds is too
much to be hoped for. Complex curves can be classified in some sense (in-
volving moduli spaces etc.}, but already the classification of complex surfaces
is tremendously complicated and partly incomplete.

In this book we will concentrate on more restrictive types of complex
manifolds for which a rather complete theory is in store and which are also
relevant in the applications. A prominent example are Calabi-Yau manifolds,
which play a central role in questions related to mirror symmetry. Often,
interesting complex manifolds are distinguished by the presence of special
Riemannian metrics. This will be one of the central themes throughout this
text. The idea is to study cases where the Riemannian and complex geometry
on a differentiable manifold are not totally unrelated. This inevitably leads to
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Kahler manifolds, and a large part of the book is devoted to techniques suited
for the investigation of this prominent type of complex manifolds.

The book is based on a two semester course taught in 2001/2002 at the
university of Cologne. It assumes, besides the usual facts from the theory of
holomorphic functions in one variable, the basic notions of differentiable man-
ifolds and sheaf theory. For the convenience of the reader we have summarized
those in the appendices A and B. The aim of the course was to introduce cer-
tain fundamental concepts, techniques, and results in the theory of compact
complex manifolds, without being neither too basic nor too sketchy.

I tried to teach the subject in a way that would enable the students to
follow recent developments in complex geometry and in particular some of the
exciting aspects of the interplay between complex geometry and string theory.
Thus, I hope that the book will be useful for both communities, those readers
aiming at understanding and doing research in complex geometry and those
using mathematics and especially complex geometry in mathematical physics.

Some of the material was intended rather as an outlook to more specialized
topics, and I have added those as appendices to the corresponding chapters.
They are not necessary for the understanding of the subsequent sections.

I am aware of several shortcomings of this book. As I found it difficult to
teach the deeper aspects of complex analysis to third-year students, the book
cannot serve as an introduction to the fascinating program initiated by Siu,
Demailly, and others, that recently has lead to important results in complex
and algebraic geometry. So, for the analysis I have to refer to Demailly’s excel-
lent forthcoming (?) text book [35]. I also had to leave out quite a number of
important tools, like higher direct image sheaves, spectral sequences, interme-
diate Jacobians, and others. The hope was to create a streamlined approach to
some central results and so I did not want to enter too many of the promising
side-roads. Finally, although relevant examples have been included in the text
as well as in the exercises, the book does not discuss in depth any difficult
type of geometry, e.g. Calabi-Yau or hyperkihler manpifolds. But I believe
that with the book at hand, it should not be too difficult to understand more
advanced texts on special complex manifolds.

Besides Demailly’s book [35], there are a number of text books on complex
geometry, Hodge theory, etc. The classic [59] and the more recent one by Voisin
[113] are excellent sources for more advanced reading. I hope that this book
may serve as a leisurely introduction to those.

In the following, we will give an idea of the content of the book. For more
information, the reader may consult the introductions at the beginning of each
chapter.

Chapter 1 provides the minimum of the local theory needed for the global
description of complex manifolds. It may be read along with the later chapters
or worked through before diving into the general theory of complex manifolds
beginning with Chapter 2.
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Section 1.1 shows a way from the theory of holomorphic functions of one
variable to the general theory of complex functions. Eventually, it would lead
to the local theory of complex spaces, but we restrict ourselves to those aspects
strictly necessary for the understanding of the rest of the book. The reader
interested in this attractive combination of complex analysis and commutative
algebra may consult [35] or any of the classics, e.g. (57, 64].

Section 1.2 is a lesson in linear algebra and as such rather elementary.
We start out with a real vector space endowed with a scalar product and
the additional datum of an almost complex structure. We shall investigate
what kind of structure is induced on the exterior algebra of the vector space.
I tried to present the material with some care in order to make the reader
feel comfortable when later, in the global context, the machinery is applied
to compact Kéhler manifolds.

Section 1.3 proves holomorphic versions of the Poincaré lemma and is
supposed to accustom the reader to the yoga of complex differential forms on
open sets of C™.

With Chapter 2 the story begins. Sections 2.1 and 2.2 deal with complex
manifolds and holomorphic vector bundles, both holomorphic analogues of
the corresponding notions in real differential geometry. But a few striking
differences between the real and the complex world will become apparent
right away. The many concrete examples of complex manifolds are meant to
motivate the discussion of the more advanced techniques in the subsequent
chapters.

Section 2.3 illuminates the intimate relation between complex codimension
one submanifolds (or, more generally, divisors) and holomorphic line bundles
with their global sections. This builds the bridge to classical algebraic geom-
etry, e.g. Veronese and Segre embedding are discussed. The section ends with
a short discussion of the curve case. .

Section 2.4 is devoted to the complex projective space P", a universal
object in complex (algebraic) geometry comparable to spheres in the real
world. We describe its tangent bundle by means of the Euler sequence and
certain tautological line bundles. A discussion of the Riemannian structure of
P™ (e.g. the Fubini-Study metric) is postponed until Section 3.1.

Section 2.5 provides an example of the universal use of the projective space.
It explains a complex surgery, called blow-up, which modifies a given complex
manifold along a distinguished complex submanifold, replacing a point by a
projective space. Apart from its importance in the birational classification of
complex manifolds, blow-ups will turn out to be of use in the proof of the
Kodaira embedding theorem in Section 5.2.

Section 2.6 interprets complex manifolds as differentiable manifolds to-
gether with an additional linear datum (an almost complex structure) satis-
fying an integrability condition. Here, the linear algebra of Section 1.2 comes
in handy. The crucial Newlander-Nierenberg theorem, asserting the equiva-
lence of the two points of view, is formulated but not proved.
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Chapter 3 is devoted to (mostly compact) Kahler manifolds. The exis-
tence of a Kihler metric on a compact complex manifold has far reaching
consequences for its cohomology. Behind most of the results on Kahler mani-
folds one finds the so-called Kahler identities, a set of commutator relations
for the various differential and linear operators. They are the topic of Section
3.1.

In Section 3.2, Hodge theory for compact manifolds is used to pass from
arbitrary forms to harmonic forms and eventually to cohomology classes. This
immediately yields central results, like Serre duality and, in Section 3.3, Lef-
schetz decomposition.

Section 3.3 also explains how to determine those classes in the second coho-
mology H?%(X) of a compact Kiihler manifold X that come from holomorphic
line bundles. This is the Lefschetz theorem on (1, 1)-classes. A short introduc-
tion to the hoped for generalization to higher degree cohomology classes, i.e.
the Hodge conjecture, ends this section.

There are three appendices to Chapter 3. Appendix 3.A proves the for-
mality of compact Kahler manifolds, a result that interprets the crucial 80-
lemma of Section 3.2 homologically. Appendix 3.B is a first introduction to
some mathematical aspects of supersymmetry. The cohomological structures
encountered in the bulk of the chapter are formalized by the notion of a Hodge
structure. Appendix 3.C collects a few basic notions and explains how they
fit in our context.

Chapter 4 provides indispensable tools for the study of complex mani-
folds: connections, curvature, and Chern classes. In contrast to previous sec-
tions, we will not just study complex manifolds and their tangent bundles but
broaden our perspective by considering arbitrary holomorphic vector bundles.
However, we will not be in the position to undertake an indepth analysis of
all fundamental questions. E.g. the question whether there exist holomorphic
vector bundles besides the obvious ones on a given manifold (or holomorphic
structures on a given complex vector bundle) will not be addressed. This is
partially due to the limitations of the book, but also to the state of the art.
Only for curves and projective surfaces the situation is fairly well understood
(see [70]).

In the appendices to Chapter 4 we discuss the interplay of complex and
Riemannian geometry. Appendix 4.A tries to clarify the relation between the
Levi-Civita connection and the Chern connection on a Kéhler manifold. The
concept of holonomy, well known in classical Riemannian geometry, allows
to view certain features in complex geometry from a slightly different angle.
Appendix 4.B outlines some basic results about Kihler-Einstein and Hermite—
Einstein metrics. Before, the hermitian structure on a holomorphic vector
bundle was used as an auxiliary in order to apply Hodge theory, etc. Now, we
ask whether canonical hermitian structures, satisfying certain compatibility
conditions, can be found.

In order to illustrate the power of cohomological methods, we present in
Chapter 5 three central results in complex algebraic geometry. Except for the



Preface IX

Hirzebruch-Riemann-Roch theorem, complete proofs are given, in particular
for Kodaira’s vanishing and embedding theorems. The latter one determines
which compact complex manifolds can be embedded into a projective space.
All three results are of fundamental importance in the global theory of complex
manifolds.

Chapter 6 is relevant to the reader interested in Calabi-Yau manifolds
and mirror symmetry. It is meant as a first encounter with deformation the-
ory, a notoriously difficult and technical subject. In Section 6.1 we leave aside
convergence questions and show how to study deformations by a power series
expansion leading to the Maurer—Cartan equation. This approach can suc-
cessfully be carried out for compact Kahler manifolds with trivial canonical
bundle (Calabi-Yau manifolds) due to the Tian-Todorov lemma. Section 6.2
surveys the more abstract parts of deformation theory, without going into
detail. The appendix to this chapter is very much in the spirit of appendix
3.A. Here, the content of Section 6.1 is put in the homological language of
Batalin—Vilkovisky algebras, a notion that has turned out to be useful in the
construction of Frobenius manifolds and in the formulation of mirror symme-
try.

In general, all results are proved except for assertions presented as ‘the-
orems’, indicating that they are beyond the scope of this book, and a few
rather sketchy points in the various appendices to the chapters. Certain argu-
ments, though, are relegated to the exercises, not because I wanted to leave
unpleasant bits to the reader, but because sometimes it is just more rewarding
performing a computation on ones own.

Acknowledgement: I learned much of the material from the two clas-
sics (8, 59] and from my teacher H. Kurke. Later, the interplay of algebraic
geometry and gauge theory as well as the various mathematical aspects of
mirror symmetry have formed my way of thinking about complex geometry.
The style of the presentation has been influenced by stimulating discussions
with D. Kaledin, R. Thomas, and many others over the last few years.

I want to thank G. Hein, M. Nieper-Wilkirchen, D. Ploog, and A. Schmidt,
who read preliminary versions of the text and came up with long lists of
comnents, corrections, and suggestions. Due to their effort, the text has consi-
derably improved.

Paris, June 2004 Daniel Huybrechts
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1

Local Theory

This chapter consists of three sections. Section 1.1 collects the principal facts
from the theory of holomorphic functions of several variables. We assume that
the reader has mastered the theory of holomorphic functions of one variable,
but the main resuits shall be briefly recalled.

Section 1.2 is pure linear algebra. The reader may skip this part, or skim
through it, and come back to it whenever feeling uncomfortable about certain
points in the later chapters. I tried to present the material with great care.
In ‘particular, the interplay between the Hodge and Lefschetz operators is
explained with all the details.

In Section 1.3 the techniques of the previous two sections are merged. The
reader will be introduced to the theory of complex differential forms on open
subsets of C™. This gives him the opportunity to do some explicit calculations
before these notions will be reconsidered in the global context. The central
result of this section is the 8-Poincaré lemma.

1.1 Holomorphic Functions of Several Variables

Let us first recall some basic facts and definitions from the theory of holomor-
phic functions of one variable. For proofs and further discussion the reader
may consult any textbook on the subject, e.g. [98].

Let U C C be an open subset. A function f : U — C is called holomorphic
if for any point 2o € U there exists a ball B.(20) C U of radius € > 0 around
zp such that f on B.(2g) can be written as a convergent power series, i.e.

o0

f(z)= Z an(z — 2z)" for all z € B.(2). (1.1)

n=0

There are equivalent definitions of holomorphicity. The most important
one uses the Cauchy—Riemann equations. Let us denote the real and imaginary
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part of z € C by z respectively y. Thus, f can be regarded as a complex
function f(z,y) of two real variables z and y. Furthermore, f can be written in
the form f(z,y) = u(z,y) + iv(z,y), where u(z,y) and v(z,y) denote the real
and imaginary part of f, respectively. Then one shows that f is holomorphic
if and only if v and v are continuously differentiable and

du Ov Ou ov
= 2 = -, 1.
0x o8y’ Oy oz (1.2)

In other words, the derivative of f has to be complex linear. Let us intro-
duce the differential operators

0 1/0 o} 0 1/0 0

8z 2 (6:5 13y> e Bz T2 (6:1: +28y> (1.3)
The notation is motivated by the properties 2 (z) = %(2) =1 and ;—z(i) =
9 (z) = 0. Then, the Cauchy-Riemann equations (1.2) can be rewritten as

S

= 0. This is easy if one uses f = u + iv. It might be instructive to do the

same calculation for f written as the vector (*) and & = 1(& + (9 !) g—y).

As the transition from the real partial differentials g—z-, g—y to the complex

partial differentials g;, 5}2 is a crucial point, let us discuss this a little further.

Consider a differentiable map f : U C C = R? — C = R?. Its differential df (z)
at apoint z € U is an R-linear map between the tangent spaces df(z) : T,R? —
Tf(z)Rz. Writing the complex coordinate on the left hand side as z = z + iy
and on the right hand side as w = r +is the two tangent spaces can be given
canonical bases (0/9z,8/0y) and (3/0r, 8/0s), respectively. With respect to
these the differential df(z) is given by the real Jacobian

du Ou
dz oy
J]R(f) = y
v v
3z dy

where f = u + iv as before, ie. u =ro fandv=s0 f.

After extending df(z) to a C-linear map df (z)¢ : TR?®C — T (,)R?®C,
we may choose different bases (g—z = %(% - i%),% = %(% + zg—y)) and
correspondingly for the right hand side. With respect to those df(z) is given
by the matrix

9f of
0z 0z
of of
0z 0%
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E.g. the vector a— is sent to the vector az aw + 55 . For the chain rule

it would be more natural to change the order of £ 5o and —-ﬁ (and of 9—. and

8z

If f is holomorphic, then af = 6£ = 0 and thus df(2) in the new base is given
by the diagonal matrix
of

8z

) In the following, we will use that for any function f one has af = (—f)

af
8z

Holomorphicity of f is also equivalent to the Cauchy integral formula. More
precisely, a function f : U — C is holomorphic if and only if f is continuously
differentiable and for any B:(zo) C U the following formula holds true

f(z0) = J_,/a JG) 4, (1.4)

211 JoB, (z0) 2 — 20

0

Actually, the formula holds true for any continuous function f : Be(z0) — C
which is holomorphic in the interior. Let us remind that the Cauchy integral
formula is used to prove the existence of a power series expansion of any
function satisfying the Cauchy-Riemann equations. (If f is just continuous,
one only has f(z0) = (1/27¢) limc o faBe(zo) f(2)/(z — z0)dz.)

The following list collects a few well-known facts, which will be important
for our purposes.

Maximum principle. Let U C C be open and connected. If f: U — C
is holomorphic and non-constant, then |f| has no local maximum in U. If U
is bounded and f can be extended to a continuous function f : U — C, then
|f! takes its maximal values on the boundary oU.

Identity theorem. If f,g : U — C are two holomorphic functions on a
connected open subset U C C such that f(z) = g(z) for all z in a non-empty
open subset V C U, then f = g. There are stronger versions of the identity
theorem, but in this form it immediately generalizes to higher dimensions.

Riemann extension theorem. Let f: B.(z) \ {z0} — C be a bounded
holomorphic function. Then f can be extended to a holomorphic function
f:B.(0) - C.

Riemann mapping theorem. Let U C C be a simply connected proper
open subset. Then U is biholomorphic to the unit ball B1(0), i.e. there exists
a bijective holomorphic map f : U — Bj(0) such that its inverse f~! is also
holomorphic.
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Liouville. Every bounded holomorphic function f : € — C is constant.
In particular, there is no biholomorphic map between C and a ball B¢ (0) with
€ < oo. This is a striking difference to the real situation and will cause a
different concept of locality for complex manifolds than the one we are used
to from real differential geometry.

Residue theorem. Let f : B.(0) \ {0} — C be a holomorphic function.
Then f can be expanded in a Laurent series f(z) = Z:o:_ oo @n2z" and the
coefficient a_, is given by the residue formula a_; = (1/23) le|=5/2 f(2)d=.
The residue theorem is usually applied to more general situations where the
function f has several isolated singularities in a connected open subset and the

integral is taken over a closed contractible path surrounding the singularities.

The notion of a holomorphic function of one variable can be extended
in two different ways. Firstly, one can consider functions of several variables
C" — C and, secondly, functions that take values in C". As a basis for the
topology in higher dimensions we will usually take the polydiscs Be(w) =
{z | |zi — wi] < &;}, where € := (€1,...,&a).

Definition 1.1.1 Let U C C™ be an open subset and let f : U — C be a
continuously differentiable function. Then f is said to be holomorphic if the
Cauchy—Riemann equations (1.2) holds for all coordinates z; = z; + iy, i.e.

du  Ov ou B dv
8z; Oy, Oy Oz’

i=1,...,n (1.5)

(It should be clear that ¢ appears with two different meanings here, as an
index and as v/—1. This is a bit unfortunate, but it will always be clear which
one is meant.)

By definition, a continuous(ly differentiable) function f is holomorphic if
the induced functions

UA{(21,- s 2i-1, 2,241, -+, 2n) | 2€ C} = C

are holomorphic for all choices of ¢ and fixed 23,...,2i—1,2it1,...,2n € C.
Introducing
0 _1(0 9N ., 0 _1(0 0
9z 2\om 'oy) T° 08z 2\0z 0w/’

(1.5) can be rewritten as

of
0z;

=0 for i=1,...,n. (1.6)

Sometimes all these equations together are written as f = 0. Later in
Section 1.3, a precise meaning will be given to this equation.
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The comparison between real and complex Jacobian can be carried over
to several variables. This will be discussed shortly.

But before, let us discuss the Cauchy integral formula for functions of
several variables and a few central results.

Proposition 1.1.2 Let f : Be(w) — C be a continuous function such that
f 1is holomorphic with respect to every single component z; in any point of
B.(w). Then for any z € B.(w) the following formula holds true

1 f(rr- - 6n)
f(z) = T /|el-w,|=si RN zﬂ)dgl dEa. (L)

Proof. Repeated application of the Cauchy integral formula in one variable
yields

1 FEr- . En)
= — dé, ... dEL.
I&) = G S —anies /,5,,,. PN S I

Since the integrand is continuous on the boundary of B.(w), the iterated
integral can be replaced by the multiple integral. This proves the assertion. [J

The proposition can easily be applied to show that any continuous(!) func-
tion on an open subset U ¢ C™ with the property that the function is holo-
morphic with respect to any single coordinate is holomorphic itself (Osgood’s
Lemma, cf. [64]). Clearly the integrand in the above integral is holomorphic
as a function of £ = (£1,...,6n).

As in the one-dimensional case, the integral formula (1.7) can be used to
write down a power series expansion of any holomorphic function f: U — C.
More precisely, for any w € U there exists a polydisc B.(w) C U € C" such
that the restriction of f to B,(w) is given by a power series

00

Z @iy i (21 —wp) .. (20 — wa)™m,
TLyeens in=0
with . )
1 611+---+1nf
Qiy .ty —

IR I

From the above list the maximum principle, the identity theorem, and
the Liouville theorem generalize easily to the higher dimensional situation.
A version of the Riemann extension theorem holds true, although the proof
needs some work. The Riemann mapping theorem definitely fail: (see Exercise
1.1.16). There are also some new unexpected features in dime. sion > 1, e.g.
Hartogs' theorem (see Proposition 1.1.4).

Often the holomorphicity of a function of several variables is shiown by
representing the function as an integral, using residue theorem or Cauchy
integral formula, of a function which is known to be holomorphic. For later
use we state this principle as a separate lemma.
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Lemma 1.1.3 Let U ¢ C™ be an open subset and let V C C be an open
neighbourhood of the boundary of B:(0) C C. Assume that f: V xU — C s
a holomorphic function. Then

g(z) = g(zl,...,zn) = €] f(&azla“-az‘n)df

is a holomorphic function on U.

Proof. Let z € U. If || = € then there exists a polydisc B¢ (§) x Bs(¢e)(2) C
V x U on which f has a power series expansion.

Since 8B, (0) is compact, we can find a finite number of points £;,...,6k €
0B;(0) and positive real numbers §(£,),...,8(£c) such that

J (8B-(0) N Bs(e,) (&) is a disjoint union

and

0B.(0) =|J (9B:(0) N Bs(e/2(&)) -

k
Hence, g(z) = [ig_e (€21, o z)df = 3oy fieime eimgi<sicnrse f%
Each summand is holomorphic, as the power series expansion of f converges
uniformly on Bj,)/2(€:) and thus commutes with the integral. O

The next result is only valid in dimension at least two.

Proposition 1.1.4 (Hartogs’ theorem) Suppose € = (€1,...,6,) and &' =

(€1,...,€y) are given such that for all i one has €} < €;. If n > 1 then any

holomorphic map f : Be(0) \ Be-(0) — C be can be uniquely extended to a
holomorphic map f : B.(0) — C.

Proof. We may assume that ¢ = (1,...,1). Moreover, there exists 4 > 0 such
that the open subset V := {z |1 -4 < |z1| < L, {zia| < 1}U{2 |1 -6 <
|z2] < 1,]ziz2| < 1} is contained in the complement of B.(0).

v }an(w)=0,n<0

fuwlz1) = 2o an(w)z?

N B

In particular, f is holomorphic on V. Thus, for any w := (29,..., 2,) With
|zi] < 1 this yields a holomorphic function fy(z1) := f(z1,22,...,2n) on the



