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PREFACE

The present monograph is meant to complement the several excellent texts
on electromagnetic theory which are available today. The contents should be
of interest to graduate students in electrical engineering and physics, as well
as to practising electromagneticists in industrial and academic laboratories.
The overall purpose of the book is to discuss, in more detail than would a
typical general treatise, the various ‘infinities” which occur in electromagnetic
fields and sources. To achieve this goal, the text has been divided into three
parts.

The first discusses the ‘distributional’ representation of strongly concen-
trated charges and currents. It is well-known that a point charge at r, can be
represented by a volume density p = qd|r — ry|, i.c. the first term in a
multipole expansion for p. More general sources—scalar or vectorial—
require additional terms. These involve derivatives of d-functions, and are
discussed at length in Chapter 2. The analysis there is based on an elementary
presentation of Schwartz’ Theory of Distributions, given in Chapter 1. In that
chapter, as in the rest of the book, the approach is unashamedly that of the
‘applied mathematician’.

Multipole expansions can be written for magnetic currents K as well as
electric currents J. It is well-known that electric currents can be replaced by
equivalent magnetic currents, and vice versa. Several sections in Chapter 2
are devoted to an extensive study of these equivalences, particularly with
respect to sources which are concentrated on a surface.

The second part of the book analyses the fields associated with concen-
trated sources. In the case of a static point charge, potential and electric field
have singularities of the order of 1/|r —r,| and 1/|r — r,|?, respectively.
When the source is time harmonic, however, stronger singularities occur. For
the electric Green’s dyadic, for example, they are of the order of 1/[r — ry|>.
The way to handle such singularities has generated an abundant—and often
controversial—literature. Chapter 3 surveys the various possible approaches,
but ultimately puts the accent on the distributional and modal aspects of the
theory.

The third part of the book is devoted to an analysis of field behaviour near
geometrical singularities such as sharp edges, tips of cones, and vertices of
sectors. The mathematics involved are quite elementary, and the emphasis is
laid on the presentation of numerical data useful to the practising electro-
magneticist.

The scope of the monograph is seen to be quite modest. It is clear that
additional topics could have been included, e.g. a treatment of Green’s
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dyadics in non-homogeneous media (particularly layered ones), or a discus-
sion of field behaviour near foci and caustics. These topics were deliberately
left aside to safeguard the compact character of the book.

Many authors mentioned in the text took the trouble to read the para-
graphs in which their work was quoted, and to suggest improvements and
additions. These distinguished colleagues cannot be thanked individually,
given their number. An exception must be made for Professor J. Boersma,
whose extensive and critical remarks considerably increased the mathemat-
ical accuracy of many a section, particularly in Chapters 3 and 5.

Any formal qualities present in the text should be credited to the author’s
daughter Viveca, who applied her literary talents to a thorough criticism of
the style of the original manuscript.

Finally, the author wishes to acknowledge the support given by his
colleague and friend Professor P. E. Lagasse, and the competence with which
two devoted secretaries, Mrs Buysse and Mrs Naessens, struggled with
figures and equations.

Ghent J.V.B.
October 1990



LIST OF SYMBOLS

General notation

Standard notations are used for:

— the electromagnetic fields e, h, d, b;

— coordinates such as polar coordinates (r, ¢, z) and spherical coordinates (R, ¢, 0);

— special functions, such as Bessel and Hankel functions, and Legendre, Gegenbauer,
and Chebychev polynomials;

The imaginary symbol is j, and the harmonic time factor is ¢'**.

Capitals are used to represent complex phasors (e.g. E for e).

The Naperian logarithm is denoted by log,.

A, denotes an incident quantity

A, denotes a scattered quantity

o(1/x) and O(1/x): a function f(x) is o(1/x) or O(1/x) depending on whether

lim,_  x f(x) is zero or different from zero (but finite).

= means proportional to;

I

means almost equal to;

B

means asymptotically equal to, for x — co.

Symbols

a = magnetic vector potential (see Section 2.6)

¢ = electric vector potential (see Section 2.6)

¢, = strength of a double layer of current (see Section 1.12)
e = “cavity” electric field (see Section 3.18)

em, fon» &m» hm = cavity eigenvectors (see Appendix C)
f = frequency

h, = metrical coefficient (see Section 1.5)

J = volume density of electric current

J, = surface density of electric current

k = w/c = 2n/4 = wavenumber in vacuum

k = volume density of magnetic current

k, = surface density of magnetic current

p = acoustic pressure

p. = electric dipole moment (see Section 2.1)

P.. = magnetic dipole moment (see Section 2.3)

q = electric charge
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g, = electric quadrupole dyadic (see Section 2.1)

d,, = magnetic quadrupole dyadic (see Section 2.5)

r = xu, + yu, + zu, = radius vector from the origin

u, = unit vector in the direction in which parameter a is measured
v = velocity

G(r|r') = a Green’s function

G(r|r') = a Green’s dyadic (see Appendix B)

G, (r|r') = electric Green’s dyadic (see Section 3.14)

G, (r|r') = mixed Green’s dyadic (see Section 3.12)

G, (r|r') = magnetic Green’s dyadic (see Section 3.19)

|, = u.u, + uu, = identity dyadic in the (x, y) plane

L,. = depolarization dyadic relative to a volume V'* (see Section 3.10)
R, = \/ (1o/€0) = characteristic resistance of vacuum

R; = principal radius of curvature (see Section 1.5)

tr = trace of a dyadic (see Appendix B)

Y(x) = unit, step, or Heaviside function (see Section 1.3)

Y,(r) = three-dimensional Heaviside function (see Section 1.10)
Ym»> Yn = propagation (or damping) constant (see Section 3.24)
3(x) = one-dimensionai delta-function (see Section 1.1)

3™(x) = m™ derivative of the delta-function (see Section 1.8)
&(r) = three-dimensional delta-function (see Section 1.4)

0, = Dirac function on a surface (see Section 1.5)

é. = Dirac function on a curve (see Section 1.5)

3, = Kronecker’s delta (3; = 1; 8, = 0 for i # k)

8, = longitudinal Dirac dyadic (see Section 3.20)

8, = transverse Dirac dyadic (see Section 3.20)

¢, = dielectric constant (dimensionless)

g=4n10"7 (Fm™1)

£ = g€,

U, = magnetic permeability (dimensionless)

Ko =107%/36n (Hm™!)

H= Mo

w = 2nf = angular frequency

n = a Hertz potential (see Section 3.18)

p = volume density of electric charge (in Cm ™ 3)

p, = surface density of electric charge (in Cm ~?)

p. = electric charge density on a curve C (in Cm™!)

p,. = electric charge density on a straight line (in Cm™"')

p = xu, + yu, = radius vector from the origin, in the (x, y) plane
o = conductivity
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t = dipole-layer density on a surface (see Section 1.12)
¢ = Dirichlet eigenfunction (see Appendices C and D)
¥, = Neumann eigenfunction (see Appendices C and D)
Q = a solid angle

2 = space of test functions (see Section 1.2)

9’ = space of distributions (see Section 1.3)

& = an energy per unit length (see Section 4.2)

Operators

div_j, = surface divergence of a tangential vector (see Section 1.15)
grad, A = surface gradient of a scalar function (see Section 2.13)
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DELTA-FUNCTIONS AND
DISTRIBUTIONS

The delta-function and its derivatives are frequently encountered in the
technical literature. The function was first conceived as a tool which, if
properly handled, could lead to useful results in a particularly concise way. Its
popularity is now justified by solid mathematical arguments, developed over
the years by authors such as Sobolev, Bochner, Mikusinski, and Schwartz. In
the following pages we give the essentials of the Schwartz approach (distribu-
tion theory). The level of treatment is purely utilitarian. Rigorous exposés,
together with descriptions of the historical evolution of the theory, may be
found in the numerous texts quoted in the bibliography.

1.1 The 8-function

The idea of the 8-function is quite old, and dates back at least to the times of
Kirchoff and Heaviside (van der Pol et al. 1951). In the early days of quantum
mechanics, Dirac put the accent on the following properties of the function:

Jw d(x)dx =1, d(x)=0 for x #0. (1.1)

The notation §(x) was inspired by 8, the Kronecker delta, equal to 0 for
i # k,and to 1 for i = k. Clearly, 8(x) must be ‘infinite’ at x = 0 if the integral
in (1.1) is to be unity. Dirac recognized from the start that 3(x) was not
a function of x in the usual mathematical sense, but something more general
which he called an ‘improper’ function. Its use, therefore, had to be confined
to certain simple expressions, and subjected to careful codification. One of the
expressions put forward by Dirac was the ‘sifting’ property

J f(x)8(x)dx = f(0). (1.2)
This relationship can serve to define the delta function, not by its value at
each point of the x axis, but by the ensemble of its scalar products with
suitably chosen ‘test’ functions f(x).

It is clear that the infinitely-peaked delta function can be interpreted
intuitively as a strongly concentrated forcing function. The function may
represent, for example, the force density produced by a unit force acting on
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a one-dimensional mechanical structure, e.g. a flexible string. This point of
view leads to the concept of 8(x) being the limit of a function which becomes
more and more concentrated in the vicinity of x = 0, whereas its integral from
— o0 to 4+ oo remains equal to one. Some of the limit functions which
behave in that manner are shown in Fig. 1.1. The first one is the rectangular
pulse, which becomes ‘needle-like” at high values of n (Fig. 1.1a). The other
ones are (de Jager 1969; Bass 1971)

lim e~ (shown in Fig. 1.1b),  (1.3)

o

A -- n/n
—em dn
—r—— ———T X —_—t—————T1 X
—5/n 0 S/n — 5/n 0 S/n
(@) (b)
[ | A
n/n

—5/n

0 —5/n
(c) (d)

Fig. 1.1. Functions which represent Dirac’s function in the limit n - oo.
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. sinnx -

li (shown in Fig. 1.1¢), (1.4)
now X

li - I e (shown in Fig. 1.1d) (1.5)
im—— = lim| —— . shown in Fig. 1.1d). .
noo ML+ 02x%) T x4+ ] -

1.2 Test functions and distributions

The notion of distribution is obtained by generalizing the idea embodied in
(1.2), namely that a function is defined by the totality of its scalar products
with reference functions termed test functions. The test functions used in the
Schwartz theory are complex continuous functions ¢(r) endowed with con-
tinuous derivatives of all orders. Such functions are often termed ‘infinitely
smooth’. They must vanish outside some finite domain, which may be
different for each ¢. They form a space 2. The smallest closed set which
contains the set of points for which ¢(r) # 0 is the support of ¢. A typical
one-dimensional test function is

S .
sy =1 T lx—alx—b)

0 for x outside (a, b).

for x in (a, b),
(1.6)

The support of this function is the interval [a, b]. At the points x = a and
x = b, all derivatives vanish, and the graph of the function has a contact of
infinite order with the x axis. A particular case of (1.6) is

exp 1 5 for |x] <1,
P(x) = - (1.7)
0 for |x| = 1.
In n dimensions, with R? = x? + ... + x2, we have
exp T_—i for |r| < 1,
pn=1 1R (18)
0 for |r| = 1.

A few counterexamples are worth mentioning: ¢(x) = x? (for all x) is not
a test function because its support is not bounded. The same is true of
¢(x) = sin|x|, which furthermore has no continuous derivative at the origin.
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To introduce the concept of ‘distribution’, it is necessary to first define
convergence in 7 (Schwartz 1965). A sequence of functions ¢,,(x) belonging to
% is said to converge to ¢(x) for m — oo if

(1) the supports of the ¢, are contained in the same closed domain,
independently of m;

(2) the ¢,, and their derivatives of all orders converge uniformly to ¢ and
its corresponding derivatives.

The next step is to define a linear functional on . This is an operation
which associates a complex number t(¢)) with every ¢ belonging to Z, in such
a way that

Hp, + @) =t(d,) + t(dy),  tAP) = At(d), (1.9)

where 4 is a complex constant. The complex number t(¢) is often written in
the form

tg)=<t, ¢ (1.10)

The functional is continuous if, when ¢, converges to ¢ for m — oo, the
complex numbers (¢,,) converge to t(¢). Distributions are continuous linear
functionals on %. They form a vector space Z'. To clarify these concepts,
assume that 7(x) is a locally integrable function (i.e. a function which is
integrable over any compact set). Such a function generates a distribution by
the operation (Schwartz 1965)

o]

) = <ty = j T(x)$(x)dx. (1.11)

— O

Many distributions cannot be written as an integral of that form, except in
a formal way. For such cases the ‘generating function’ 7(x) becomes a sym-
bolic function, and (1.11) only means that the integral, whenever it is encoun-
tered in an analytical development, may be replaced by the value t(¢). It
should be noted, in this respect, that experiments do not yield instantaneous,
punctual values of quantities such as a force or an electric field. Instead, they
generate integrated outputs, i.€. averages over some non-vanishing intervals
of time and space. The description of a quantity by scalar products of the
form (1.11) is therefore quite acceptable from a physical point of view.

1.3 Simple examples

A first simple example is the integral of ¢ from 0 to oc. This integral is
a distribution, which may be written as

v, 9y & J % = f Y(x)B(x)dx. (1.12)

0 o0



