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1

Statics of a Particle

11, Feorce and Its Characteristics

Force is that which produces or tends _to produce change in
the state of rest or of uniformm motion in a straight line, of a body.

Let a horizontal force P be applied to a body nlaced on a
rough horizontal plane. When P is small, t}}e bgdy does.not move.
Wkhen P is increased, the body will start moving in a straight line if
the lime of action of P passes through the centre of gravity (c.g.) of
the body ; there will be motion of translation as well as of rotation
if the 4ine of action of P does not pass through the c.g. of the body.

Thus we see that the effect ofa force depends on three
characteristics—(1) magnitude, (2) direction, (3) position or line of
action. The complete effect of a force can be found only if we
know all these three characteristics.

If we draw a straight line parallel to the line of action of the

force, whose length is proportional to the magnitude of the force,
the line is said to represent

the force in magnitude and
direction. Thus let the force N
P be 15 kilograms acting in
the north-east direction. Let 7
1 cm length represent 5
kilograms. Then a straight
line 4B of length 3 ¢cm drawn
in the north-east direction o
will represent the force P in W L Sl B
direction and magnitude. An A i
arrow is placed on the line
with the arrow-head point-
ing north-east to show the
sense of the force, i.e. the
force is acting from A to-
wards B. The force repre-
sented by the line 4B is
—

S
written as AB. Fig. 11
If theline AB is drawn through the point at which P acts,

then 4B issaid to represent P in direction, magnitude and position,
or, in short, 4B represents P completely.



2 A TEXT BOOK OF APPLIED MECHANICS [ART. 1'3

Any quantity which possesses magnitude as well as direction
is called a vector quantity. Some examples of vector quantities are
force, velocity and acceleration. Any vector quantity can be re-
presented by means of a straight line which is called a vector. Thus
the force P is a vector quantity which is represented by the vector

—_

AB.
1'2. Units of Mass and Force

In the mathematical or academic system, the unit of mass is the
kilogram (metre kilogram-second unit), or the gram (centimetre-
gramme-second unit) or the pound (foot-pound-second unit). The
‘weight of a body is the earth’s attraction on it and is equal to the pro-
duct of its mass and acceleration due to gravity (g). 1fm be the mass
-of a body, its weight is mg. If m is measured in kilograms (kg) and ¢
in metres per second per second, then the weight mg is in
mewtons ; if m is measured in grammes (gm) and g in centimetres
per second per second, then the weight mg isin dymes;ifm is
measured in pounds (lb) and ¢ in feet per second per second, then
the weight mg is in poundals. Thus the unit of weight or force
is newton (M.K.S. system) or dyne (C.G.S. system) or poundal
(F.P.S. system).

Now a force of mg newtons is equal to the weight of a body
whose mass is m kg ; hence a force of mg newtons is also written
as a force of m kg-weight. Similarly a force of mg dynes is equal
to m gm-weight and a force of mg poundals is equal to m lb weight.
A force of m kg-weight is also written as m kgy.

The value of g is approximately 981 cm/sec® or 9'81 metres/
sec? or 32°2 ft/sec?.

kg wt., gm wt., Ib wt. are called gravitational units, while
newton, dyne and poundal are called absolute units. To convert
from gravitational unit to absolute unit, multiply by g. In gravita-
tional system, mass and weight are equal numerically.

The Engineer’s units of force or weight are the kilogram weight
(metric system) and the pound weight (British system), which are for
convenience written as kilogram and pound respectively. If the

weight of a body is W, its mass will be ” . IfW is measured in

kg kg _
metres/sec? Of metres “c¢ which
is also known as a slug (kg) unit. If W is measured in pounds the

. w . 1b b . .
unit of mass, —, is ~——-or — sec? which is also known as a
ft/sec?

. . w .
kilograms, the unit of mass, 7, is

ft
slug (1b) unit. The Engineer’s units have not found favour with
Engineers and Scientists and hence all problems is this book have
been solved in mathematical units.
1:3. Resultant and Components
If the combined effect of several forces Py, P,, Py... acting on
a body is.the same as that of a single force. R, then R is called the
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wesultant of P, P,, Py ..., and the forces P, P,, Py......are called the
scomponents of R.

1'4. Law of Parallelogram of Forces

The resultant of two forces acting at a point can be found by

the application of the law of parallelogram of forces, which is stated
below.

If two forces, acting at a point :
0, be represented in direction and ) ¢
magnitude by straight lines OA and
OB, and the parallclogram OACB
be completed, then their resultant acts

through O and is represented in mag- =
nitude and direction by the diagonal

OC of the parallelogram which passes A
through O. Fig. 12

Cor. Let the diagonals of the parallelogram intersect at E.
Then E is the middle point of each 4B and OC.

— R —

The resultant of forces 04 and OB=00C =20E.

Hence the resultant of forces represented in  direction and magns-
— — —

iif}dj gy OA and OB is represented by 20E, where E is the middle point
9 ;

1'5. Resultant of Two Forces Acting at a Point

Let two forces P and @, acting at O, be represented in direc-

~ tion and magnitude by the sides
,ﬁ_,_____,__.._. € 04 and OB respectively of the
parallelogram OACB. Then OC
represents their resultant R.

Let LAOB=«a, / AO0C=6.
Draw OD perpendicular to OA.
Since AC is equal and parallel
Fig. 1'3 to OB, we get AC=Q.
Also /CAD=/ AOB=o.

AD=Q cos «, DC=@Q sin «

00?=0D3*+D(C*=(0A+ AD)?*+ DC*

R>=(P+Q cos «)*+(Q sin «)2
=P24-2PQ cos «+Q? cos? a.+Q? sin? «

=P*+Q*+2PQ cos o. (D
Equation (1) gives the magnitude of R.
_DC  @sina
tan‘(?—— OD ~ P+Qcos a -(2)

Equation (2) gives the direction of R.
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Particular Cases _
() Let «=90°, i.e. let the forces act at right angles. Them
parallelogram OACB becomes a rectangle.
From (1) and (2), or directly,
R*=P2+@Q?%, ‘

Q .

P

(it) Let P=Q.

Then from (1), R2=P24P242P2 cos «=2P%1+4cos af

tan 0=

=4P? coszg—
R=2P cos ;L
P sin « sin o
From (2), tan 6= P¥Pcosa  l+4cosa
. @ o
2 sin > cos o B &
= =t D)
B g
2 cos 2
o
el 05

i.e. the resultant bisects the angle between the forces, a result
which is quite obvious also from first principles.

Note. It is easy to see that the greatest resultant of two forces P and
Q is P+Q when the two forces act in the same line and same sense and that
the least resultant is P—Q when they have the same line of action and opposite
senses.

. If two forces acting at a point are in equilibrium, they must be equal
in magnitude, have the same line of action and opposite senses.

1'6. Resolution of a Force

Finding the components of a given force in two given direc-
tions is called resolution.

Let the given force be R, and let it be required to find its com-
ponents in directions making angles « and B with its line of action.

Let OC represent R in mag-
nitude and direction and let the
lines OX and OY make angles
and B respectively with OC.
Through C, draw CA4 parallel to
0Y, meeting OX at A, and CB
parallel to OX, meeting OY at B.
Then 04 and OB represent the
components of R along 0X and OY
respectively.

—> —
let0A=P, OB=Q.
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Z 0CA= / BOC (alternate angles)

=0
S LOAC=n—(a+B)
In AOAC, by trigonometry,

04 _4c __ ocC
sin B sina sin [t—(¢+B)]
‘ P Q R

sinB sina _ sin (a+B)
for AC is equal to OB which is proportional to Q.

R sin 3
Hence P= = oy
R sin «
v mer
Particular case. Let OX and OY be at right angles. Then
QACBJbecomes a rectangle and '
a+3=90°
-or =90°—a
PB B ¢
F=cos
or P=R cos 0. QA
%ﬁcos (90°—a)

, =sinoa 0
or Q——:R Sin . Flg' 5

When the components P and ¢ are at right angles, they are
.called the resolved parts of R.

We see that the resolved part of B in a direction inclined at
angle « to"R (i.e. along OX) :
=P=R cos «.
This result is important. To find the resolved part of a force
in a given direction, multiply the force with the cosine of the angle
between the line of action of the force and the given direction.

In the application of this rule; care must be exercised in the
measurement of the angle between the line of action of the force and

the given direction. Let B be the

force and X'X the given direction.

Let O be their point of intersection.

The positive direction of R s that in

which the arrow-head points away
2 from 0. Ifit is required to finl the
X resolved part of R along OX, then
' multiply R with cos X0A4, where 0A
Fig. 1'6 is the positive direction of R. Let
/X0 A=a. Then resolved part of R along OX=R cos o.

¥
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Clearly, angle X'0OA=180°~«. Hence the resolved part of
R along OX'=R cos (180°—a)=~—R cos «. We can also find
the resolved part of R along OX’ by first finding. the resolved part
of B along OX and then reversing its sign. Thus the resolved part
of B along OX is R cos a; reversing the sign, we see that the
resolved part of R along OX' is —R cos «. This method is often
convenient, since the use of obtuse angles is avoided."
Consider the case shown in Fig 1°7.
/A The angle between R and
OX is mot X0QA. Produce A0
R to A’ ; then OA' is the positive
«  direction “of R and the angle
X: 0 X between R and 0OX is XO0A'.
C s Hence the resolved part of R
/' along OX is R cos X0A4' =R cos «,
" and the resolved part of R along
7 O0X' is R cos (l80°—a)=—R
rg. 1'7 Cos o. ¢
Let it be required to find the resolved parts of a force Fy
along OX and OY (see Fig. 1'8). Produce 40 to 4’. Then 04’ is
the positive direction of F;. v
Clearly £ X'0A'=60°.

Resolved part of F, A
along OX'=F, cos 60 =%- F,
Resolved part of F, 60
7 :
along 0X=-—?‘- X- 70 -X
L A0Y'=30° /'
.. Resolved part of F, Y
along 0Y'=F, cos 30 )
V3 b
.". Resolved part of F, along -~V
0Y=—52l/3- Fig. 1'8
Y Next, let us find the resolved:
parts of F, along OX and OY
A (see Fig. 1'9).
£ A0X'=180°—120°,
) ) =60°
120° . Resolved part of Fa
along OX'=F, cos 60°
X- 0 X _F,
] T2 :
: Resolved part of Fgh
along OX
. ;)
Y’ (which is also equal to F, cos 120°)

Fig. 19 /. A0Y=120°—90°=30°
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.. Resolved part of F, v
along 0Y
=F, cos 30°
F,0/3
— 2
(which is also equal to F, sin 120°). _, X
Similarly, resolved part of O\ Js0°
F, along OX (see Fig 1'10)
Fy
=5 y
and revolved part of Fy along 0Y \\
Fsv/3 ¥ A
B Fig. 1°10

From the above discussion, we derive the following rule which
may be found helpful.

If the positive direction of a force F makes with a line 0X an
angle 6, and OY is perpendicular to OX, the angles being measured in
the same sense, then the resolved parts of F along OX and OY are
respectively F cos 0 and F sin 0.

Cor. The resolved part ofa force F in its own direction is F,
and the resolved part in a perpendicular direction is zero. ¢

Ex. 1. Fird the magnitude of two forces such that, if they act
at right angles, their resuliant is \_/ 10 kgf, whilst when they act at an
angle of 60°, their resultant is\/ 13 kgf.

Sol. Let the forces be P and Q.

When the forces are at right angles, their resultant is 4/ 10 kgf.
- P+ @*=10 (1)
When the forces act at 60°, their resultant is \/Ekgf.
P2+Q%*4+2PQ cos 60°=13

i.e. P3+Q*+PQ=13 ..(2)
From (1) and (2), by subtraction,
: PQ=3 we(3)

Multiply (3) by 2 and add to (1), we get
P2+Q*+2PQ=16
P+Q=4 i)

Solving (3) and (4), P=3 kegf, Q=1 kgf.

Ex. 2. The resultant of two forces, one of which is double the
other, is 13 kg-wt. If one of them is reversed, the other remawning
unaltered, resultant becomes 9 kg-wt. Find the magnitudes of t{le
forces and the cosine of the angle at which the forces are inclined in
Sfirst case.
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Sol. Let the forces be P and 2P and « the angle between
them.

In the first case, the resultant is 13 kg-wt.
P24-(2P)*+2.P.2P cos a =132=169
or 5P%44P? cos =169 (1)

In the second case, let 2P be reversed, so that the forces are
P and —2P and the resultant is 9 kg-wt.

P24 (—2P)*>4-2P.(—2P). cos a=92=81
or 5P*—4D? cos =381 +3(2)
Adding (1) and (2), 10P2=250 whence P=5.
Hence the forces are 5 kg-wt and 10 kg-wt.

Substituting in (1),
5% 2544 X 25X cos a=:169
cos a=044.
Ex. 3. The resultant of two forces is 8 kg-wt and its direction

8 inclined at 60° to one of the forces whose magnitude is 4 kg wt.
Find the magnitude and direction of the other force.

'B — -
; Sol. Let 04=4 kg wt, 0C=8 kg wt.
¢ —-
: o] Let OB=P be the other force inclined at
Lo to OC.
P 6 Clearly /. 0CA=a,
—_
" AC=P.

60" Also /L O0AC=180°—(60°+x)
0 4 4 From A0CA,

Fig. 1-11 4 P 8

sin ¢ sin 60° sin [18U°—-(60°+u)}‘
Taking the first and third terms,
4 8
sin « _ sin (60°+a)
2 sin e==sin (60°+«)
=:=sin 60° cos «+cos 60° sin «

=_—-2—3 cos oc+%— sin

3 sin a=1/3 cos «, tan a=\%§
a=30°.
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Taking the first and second terms and substituting the value
of «,

_4 _ P
sin 30° ~ sin 60°
4 sin 60°
e il k .
sin 30 4y/3 kg wt

Hence the other force is 44/3 kg wt at right angles to the force
of 4 kg wt.

Ex. 4, The resultant of two forces P, Q acting at an angle 6, 18
equal to (2m-+1) 4/ P?4+Q? ; when they act at an angle %—9, it 18

— 2 =m-_—-1_
equal to (2m—1)\/P*4 Q2. Show that tan 6 il

Sol. When the angle between the forces is 8, the sesult-
ant is (2m+1) 4/ P22
(2m+1)%(P?+ Q%) =P2+4 Q%>+ 2PQ cos 6 ..(1)
When the angle between forces is %—9, the resultant is
@n—1) yFrQ
(2m—1)2(P2+Q?) = P*+Q*+2PQ cos (-’2‘——9 )

=P2+.Q*+2PQ sin 0 . (2)
Equation (1) can be written as
(P24-Q)[(2m+1)2—1]=2PQ cos 0 eee(3)
Equation (2) can be written as
(P24 QY)[(2m—1)2—1]=2PQ sin 0 (4
Dividing (4) by (3)
tan 9.=(———2m_1)2—1
(2m+1)2—1

_4m2—4m_m——l .
T 4m24+-4m m+1
Ex. 5. The resultant of itwo forces P and Q is R ; if Q be
doubled, R i3 doubled, whilst, if @ be reversed, R is again doubled ;
show that
P:Q:R::4/2:43:4/2.
Sol. Let the angle between the forces be « in each case. The
resultant of P and Q is R.

. P24+Q24-2PQ cos a=R? (D
The resultant of P and 2Q is 2R.
P2+ 4Q*+4PQ cos a=4R? «:(2)

The resultant of P and —@ is 2R.
5% P24+Q2—2PQ cos a=4R? ..(3)



