i

Computers

N

from logic to architecture

R.D. Dowsing and F.W.D. Woodhams

| l Van Nostrand Reinhold (International)
I , 3

i
|

i ¥

\ ‘v}-{ oﬁ '.7
;3!(.'1"1 SR N

COMPUTERS

from logic to architecture

R.D. DOWSING and F.W.D. WOODHAMS

[BRARN

E9061357

School of Information Systems

University of East Anglia
NORWICH

International

Van Nostrand Reinhold (International)

Published in 1990 by
Van Nostrand Reinhold (International) Co. Ltd
11 New Fetter Lane, London EC4P 4EE

First published in 1985 as Computer Architecture:
A first course

© 1990 R.D. Dowsing and F.W.D. Woodhams

Typeset in 10/12 Times by

Best-Set Typesetter Limited, Hong Kong
Printed in Great Britain by

TJ Press Ltd, Padstow, Cornwall

ISBN 0278 00093 2

This paperback edition is sold subject to the condition that it
shall not, by way of trade or otherwise, be lent, resold, hired
out, or otherwise circulated without the publisher’s prior
consent in any form of binding or cover other than that in
which it is published and without a similar condition including
this condition being imposed on the subsequent purchaser.

All rights reserved. No part of this book may be reprinted or
reproduced, or utilized in any form 6r by any electronic,
mechanical or other means, now known or hereafter
invented, including photocopying and recording, or in any
information storage and retrieval system, without permission
in writing from the publisher.

British Library Cataloguing in Publication Data

Dowsing, R. (Roy)
[Computer architecture]. Computers: from
logic to architecture.
1. Computer systems
I. [Computer architecture] II. Title
III. Woodhams, Frank
004

ISBN 0-278-00093-2

COMPUTERS

Preface

With the ever increasing use of computers there is an increasing need for
students to be trained in the techniques of computing. One specific area which
has been targeted by many colleges, polytechnics and universities is that of
computer systems engineering; the interface area between computing and
electronics. The specific requirements of this area of study are a knowledge
of the interaction of the software and hardware of computers, often with
reference to microprocessors and their applications.

This book is aimed at providing a first course in computer architecture: the
interaction of hardware and software. The reader does not require any specific
prior knowledge but the student who has at least a little experience of pro-
gramming in a high-level language will find the latter half of the book easier
reading. The book covers the spectrum of computer architecture topics from
technology through to systems software and communications.

As in our previous book, we had the problem of deciding what hardware to
use for examples. We decided, eventually, to use two systems, the 8-bit Intel
8085 and the 16/32-bit Motorola 68000 to show the differences between a
simple 8-bit system and a sophisticated 16/32-bit machine. Also the use of
two different microprocessors enables the student to see the different design
choices made by the designers.

The book takes a bottom-up approach to the subject, starting at the lowest
level, logic, and building up the hardware and software architecture of the
computer from this basis.

Chapter 1 introduces some of the important concepts in understanding
computer architecture whilst the next chapter introduces some of the con-
cepts required to understand logic and logic design. It deals with Boolean
algebra, truth tables and the different types of electronic logic component.
Chapter 3 deals with combinatorial logic design, i.e. the design of circuits
whose output depends solely on their inputs. It shows how the combinatorial
elements of a computer, such as decoders and multiplexers, can be formed

x Preface

from simple logic networks. Chapter 4 describes sequential logic elements,
those whose output is determined by past actions as well as present inputs.
Latches, registers and memory elements are discussed in this chapter. The
structure of a computer is discussed in the next chapter, showing how the
elements of the computer are interconnected. Details of specific computer
components are given as well as the general architecture.

Chapter 6 considers the different types of memory available, such as RAM
and ROM, and the organization of memory into a hierarchy. Input—output
processing techniques such as polling, interrupts and DMA are considered in
the next chapter. Microprogramming and how it can be used to implement
the control unit of a processor is considered in Chapter 8, and the following
chapter presents the design of two small computer systems based on the 8085
and 68000 processors and components described in previous chapters. Chapter
10 describes the different types of data that can be manipulated in a computer
and the operations that can be performed on them. Detailed discussion of
number systems is dealt with here. Instruction sets and addressing modes
found in computers with specific reference to the 8085 and 68000 are con-
sidered in the next chapter. Many examples are given and some complete
programs are given at the end of the chapter. A chapter introducing system
software such as assemblers, linkers and loaders follows. Of necessity, the
discussion is brief but most of the software falling into this category is covered.
Data communications and the way in which the development of communica-
tion networks has led to the introduction of distributed computing is the
subject of Chapter 13, whilst the final chapter considers some new approaches
to the design of computers, specifically RISC designs and the transputer.

Many people have contributed to the material in this book, including the
numerous students to whom we have taught the material. We would like to
thank them all, especially our colleagues Ian Marshall and George Turner,
for their helpful comments and criticisms of drafts of the manuscript.

R.D. Dowsing
F.W.D. Woodhams

Glossary

Absolute address actual memory address used to access data or instructions
in memory

Accesstime delay between time supplying address to memory and receiving
data

Accumulator special register in the CPU, often the destination of arithmetic
and logical operations and, sometimes, one of the source operands

Addressing mode method of specifying the address of an operand from the
address bits in the instruction

Algorithm sequence of steps required to solve a problem

ALU arithmetic and logic unit

ASCIl American Standard Code for Information Interchange

Arithmetic and logic unit a hardware unit which performs operations such as
addition on its operands according to the function code supplied

Assembler the program which converts input in assembly language to
machine code

Assembly code representation of machine instructions where bit patterns
are replaced by symbols

Base the radix of the number system in use, for example, 2 for binary

BCD binary coded decimal

Binary representation of numbers in base 2, that is, using the digits 0 and 1
only

Binary coded decimal a method of number representation where each
decimal digit is encoded into 4 bits

Bit binary digit, taking one of the values 0 or 1

Bridge a node which connects two networks using similar protocols

Bus a group of wires carrying information between subsystems

Byte a group of 8 bits

Cache small fast memory between processor and main memory

Central processing unit the arithmetic and logic unit together with registers
and control logic for decoding and obeying instructions

xii Clossary

Channel any medium which carries data

Circuit switching a switching technique in which a route is first set up, then
used for data transmission and finally closed down

Clock source of regular pulses to control the system operation

Combinatorial a circuit whose output depends only on its current inputs

Compiler a program which translates a high-level language program into a
lower-level one, frequently machine code

Condition flags flags normally used to indicate carry, sign, overflow and zero
as the result of the last instruction

Complement 1’s complement — inverting all the bits of the binary value; 2’s
complement — 1’s complement + 1

CPU central processing unit

Cycle stealing using memory time slots not used by the CPU

Data selector a programmable switch

Deadlock a situation where no processing can proceed because two or more
processes are waiting for each other cyclically

Direct memory access method of transferring large quantities of informa-
tion between memory and an input-output device without intervention
from the CPU

Distributed computing computing spread over several processors

DMA direct memory access

Fetch that part of the instruction cycle concerned with bringing the next
instruction to be executed from memory into the instruction register

Flag a single-bit hardware marker indicating something about the state of
the computer

Flip-flop a single-bit memory device

Fulladder a circuit that accepts two single-bit operands and a carry producing
their sum and a carry out

Gateway a node which connects together two dissimilar networks

Half adder a circuit that accepts two single-bit operands and produces their
sum and carry

Handshake one or more signals controlling (synchronizing) the transfer of
data between sender and receiver

Hardware that part of a computer implemented by electronic and mechani-
cal components

Hexadecimal number system using base 16 with symbols digits 0 to 9 and
letters A to F

High-level language alanguage where each statement corresponds to several
machine-code instructions; a language which is more expressive than
machine code

Indirectaddress an address which refers to a location containing the address
of the required value

Input—output the interface and devices by means of which the computer
communicates with the outside world

Instruction a collection of bits containing an operation code and, possibly,

CGlossary xiii

one or more operands

Instruction register register in the CPU used for holding the current instruc-
tion whilst it is being decoded

Instruction set the repertoire of instructions available on a particular com-
puter

Interpreter a program which directly executes statements in a language
without prior translation

Interrupt a method of a device informing the CPU that it needs attention

I/O input—output

K 1024, e.g. 2K = 2 x 1024 = 2048

Link editor program which fills in the cross references between separately
compiled subprograms

Literal any symbolic value representing a constant

Loader program which loads a binary program into memory

Local area network a network which extends over a small area such as a
building or single site

LSI large scale integration — integrated circuits large enough to hold a micro-
processor on a single chip

Macroprocessor a program which performs text substitution, replacing one
input statement by several output statements; can be used for language
translation

Machine code a representation of the bit pattern of an instruction, often in
hexadecimal

Memory mapped I/O an addressing scheme where the registers concerned
with input-output have addresses in the normal memory address space

Microprocessor a CPU implemented in LSI or VLSI

Microprogram a set of instructions, normally in read-only memory, which
are used to implement the instruction set of the computer

Mnemonic in computing, a symbol representing a bit string

MOS metal oxide semiconductor

Multiplexer a switch which allows several inputs to share the same output,
but not at the same time

Multiprogramming the running of several processes on a single processor by
time-division multiplexing

Operand a value to be operated on by the opcode in an instruction

Operation code opcode

Opcode that part of an instruction which defines the operation to be
performed

OSI model a standard model for protocol levels in networks

Packet switching a technique for sending messages across networks as
fixed-sized units

Page a contiguous block of memory space

Paging a mechanism for swapping information between main memory and
backing store

Peripherals input—output devices

xiv Glossary

PLA programmable logic array — a regular array of AND and OR gates
which may be connected together (programmed) to produce the required
logic function

Polling interrogation of devices to find their status

Port an external entry or exit point from an interface

Process a program or subprogram in execution

Program counter register in the CPU holding the address of the next instruc-
tion to be executed

PROM programmable read-only memory — a reusable programmable mem-
ory which can be programmed by special equipment and erased by ultra-
violet light

Protocol a set of rules which sender and receiver have to obey in order to
communicate

RAM random access memory, often used for read—write memory; access to
any location takes the same time irrespective of address

Refresh a process whereby a dynamic memory which loses information after
a short time has its memory contents rewritten

Register a fast memory location, often in the CPU

Relative address an address relative to the current contents of the program
counter

Relocation the process of moving a program from one part of memory to
another

RISC reduced instruction set computer

ROM read-only memory

Rotate see Shift

Routeing the process of directing a message through a network

RS232 a standard for communication

Sequential performing in sequence, that is, one after another

Serial one after another, often with reference to communication

Shift to move sideways in a register

Software that part of the computer implemented by a program

Stack memory that is used in last-in—first-out fashion

Stack pointer register which points to the memory location currently acting
as the top of the stack

Static RAM memory that needs no refreshing

Status condition

Synchronization the co-ordination of actions between two or more entities

Transputer a RISC machine designed for distributed computing designed by
Inmos Ltd

Tiistate three state, usually logic 0, logic 1 and high impedance

VDU visual display unit

VLSI very large scale integration

Wide area network a network over a large geographical area such as a
country or a continent

Word a group of bits, usually the size of the data bus

Contents

1.1
1.2
1.3
1.4
1.5

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
34

Preface

Glossary

Introduction

Approaches to computer architecture
Translation and interpretation

Languages and abstract machines
Sequentiality, concurrency and distribution
Summary

Introduction to digital logic
Introduction
Combinatorial and sequential logic
Basic logic gates

Example: a 1-bit half adder
Boolean algebra
NAND/NOR logic

Positive and negative logic
Logic implementation
Logic families

Summary

Exercises

Combinatorial logic design
Introduction

Problem specification

Design example: a parity generator

Design example: a 7-segment decimal decoder

Xi

~N O N B =

39
39
39
40
43

vi Contents

3.5 Minimization of Boolean functions 45
3.6 Medium scale integrated functions 50
3.7 Programmable logic arrays 57
3.8 Read-only memories 60
3.9 Summary 61

Exercises 62
4 Sequential logic design 63
4.1 Introduction 63
4.2 Synchronous and asynchronous sequential circuits 64
4.3 State diagrams and state variables 65
4.4 Memory elements 69
4.5 Implementing sequential logic with D-type flip-flops 74
4.6 Implementing sequential logic circuits with read-only

memories 77
4.7 Counter design 82
4.8 Design of a register bank 86
4.9 Summary 89

Exercises 91
5 The structure of a computer 92
5.1 The operation of a computer 92
5.2 The bus 94
5.3 The central processing unit 95
5.4 The arithmetic and logic unit 96
5.5 Examples of processors — the Intel 8085 and the Motorola

68000 102
5.6 Input and output 107
5.7 Summary 107

Exercises 108
6 Memory systems 109
6.1 Memory 109
6.2 Architectural considerations and memory 117
6.3 Summary 125

Exercises 126
7 Input-output 127
7.1 Input-output interfaces 127
7.2 Controlling input—output devices 136

Exercises 142

8.1
8.2
8.3
8.4
8.5
8.6

9.1
9.2
9.3
9.4

10

10.1
10.2
10.3
10.4
10.5

11

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

12

12.1
12.2
12.3
12.4
12.5
12.6

Contents vii

Control and microprogramming 143
The fetch cycle 143
The execute cycle 146
The control unit 147
Horizontal and vertical microcoding 152
Emulation 153
Summary 154
Exercises 154
Design of a small computer system 155
Connecting the components together 155
A minimal Intel 8085 system 158
A Motorola 68000-based microcomputer 161
Summary 164
Exercises 165
Data representation and manipulation 166
Introduction 166
Number systems 166
Data representation 169
Differing representations 176
Summary 178
Exercises 179
Instruction sets and addressing modes 180
Instruction sets 180
The programmer’s models 183
Instruction types 186
Operands 195
Addressing modes 199
Instruction encoding 204
Use of addressing modes 206
Examples to illustrate assembly code and addressing modes 210
Summary 216
Exercises 217
Introduction to system software 219
Introduction 219
Assembly language and assemblers 219
Macros 223
Link editors 223
Loading 227
High-level languages 227

viii
12.7

12.8
12.9

13

13.1
13.2
13.3
13.4
13.5
13.6

14

14.1
14.2
14.3
14.4
14.5
14.6

Contents

Documentation and debugging
Operating systems

Summary

Exercises

Data communications
Communication
Addressing
Communication structure
Computer networks
Distributed computing
Summary

Exercises

New directions in architecture
Introduction

Architectural considerations and processor design

RISC architectures
CISCs versus RISCs
The transputer
Summary

Exercises

Answers to selected exercises
Further reading

Index

231
233
236
237

239
239
241
242
243
253
254
255

256
256
256
257
260
262
265
266

267
281
287

Introduction

1.1 Approaches to computer architecture

The way in which a human being understands a complex topic is known as
‘divide and conquer’. Any complex topic is decomposed into a set of less
complex subparts hierarchically until the subparts are simple enough to be
understood. Once these simple subparts are understood they are then com-
posed into more complex units whose behaviour can be explained by the
action of the subparts and their interaction. This process is continued hier-
archically until the complex topic can be explained. This process is illustrated
in Fig. 1.1.

Computer architecture is a complex topic and hence the way to understand-
ing is to subdivide it into smaller topics. There are many different ways of
subdivision and hence the many different ways of approaching the topic found
in textbooks. Here two approaches to computer architecture are considered
to show why a mixture of these two approaches is used in this book.

1.1.1 Layered approach

One approach to computer architecture is to consider a computer system as
consisting of a set of layers of abstraction, a subset of which is used to
implement a given computer system. For example, one or more of the lower
layers in this model are concerned with the logic elements used to implement
an architecture. One level could be solely concerned with the types of ele-
ment used, for example AND and OR gates, and the design method for
combining these logic elements. If the system was to be implemented in very
large scale integration (VLSI) circuits then a level might be appropriate
where the concerns are for physical parameters such as the width of tracks
and type of technology. At a somewhat higher level is the machine level
which is normally the lowest level available to the computer user. At this level

2 Introduction

Complex abstraction

Less-complex

H|gher-lgvel abstraction
abstraction

implemented

by the three

Iower-leyel Lowest-level
abstractions abstraction

Fig. 1.1 A hierarchy of abstractions.

bit strings are interpreted as instructions and data. Levels above this are con-
cerned with the operating system, high-level programming languages and ap-
plications. One possible hierarchy of levels of abstraction is given in Fig. 1.2.
Higher levels have higher complexity than lower levels and each level relies
on the level below it to implement its primitive operations. Each level
has its own set of primitive components and its own set of design methods to
interconnect these primitive components. In addition each level may have its
own basic theory which underpins the construction method. For example, the
logic level has propositional calculus and Boolean algebra as the basis of the
synthesis and analysis of logic circuits. This layered approach is appealing

Application level

High-level language level

Assembly code level

Operating system

Machine code level

Microcode level

Logic level

Technology level, e.g. NMOS

Fig. 1.2 Levels of abstraction.

Approaches to computer architecture 3

Input/
output

Processor Memory

Fig. 1.3 Functional block diagram of computer.

since it relegates details of the synthesis and analysis of components to the
appropriate level thus giving rise to a hierarchically structured approach.

1.1.2 Functional decomposition

Another approach to understanding computers is to adopt a functional
decomposition, where the computer structure is split up into functional
components and each functional block is considered separately. A typical
computer could be split up into the basic functional blocks shown in Fig. 1.3,
where, for example, memory is considered to be a functional block. Memory
can be further subdivided into different types, such as random access memory
(RAM) and read-only memory (ROM), and each of these types considered
separately. In effect, this again gives a hierarchical structure, a tree, where
each subtree consists of functionally related items. This decomposition is
attractive since concerns about physically related components are grouped
together and hence are easy to compare.

To illustrate the advantage of the functional decomposition, consider the
topic of memory. In functional decomposition this would occupy a large
subtree and, in terms of a book, would appear in a single chapter or group of
chapters. In the layered approach different aspects of memory would be
found in different layers. For example, the implementation of a memory
would be found at one of the logic levels, whilst virtual memory would be
considered at the operating system level. It would thus seem that the func-
tional approach is the best way to understand computer architecture. How-
ever, there are many cases, especially at the lower levels of abstraction, where
consideration of an abstraction level rather than separate functions becomes
attractive. For example, the topic of logic design would appear as a single
entity in the layered approach but would be scattered throughout all the
components in the functional approach. Since there is an underlying rationale
to logic design it makes sense to consider this as a topic in its own right. Since

